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ABSTRACT

Recent genome-wide analyses have indicated that almost all primary transcripts from multi-exon human genes undergo
alternative pre-mRNA splicing (AS). Given the prevalence of AS and its importance in expanding proteomic complexity, a major
challenge that lies ahead is to determine the functional specificity of isoforms in a cellular context. A significant fraction of
alternatively spliced transcripts are regulated in a tissue- or cell-type-specific manner, suggesting that these mRNA variants
likely function in the generation of cellular diversity. Complementary to these observations, several tissue-specific splicing
factors have been identified, and a number of methodological advances have enabled the identification of large repertoires of
target transcripts regulated by these proteins. An emerging theme is that tissue-specific splicing factors regulate coherent sets of
splice variants in genes known to function in related biological pathways. This review focuses on the recent progress in our
understanding of neural-specific splicing factors and their regulatory networks and outlines existing and emerging strategies for
uncovering important biological roles for the isoforms that comprise these networks.
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INTRODUCTION

The first application of cDNA microarrays to quantify
mRNA levels represented a transformative milestone in
gene expression research and marked the beginning of
transcriptome analysis at an unprecedented scale (Schena
et al. 1995). Initial experiments using microarrays in model
organisms such as yeast revealed that the abundance of
many transcripts can be regulated in a dynamic and con-
certed manner in various physiological contexts (DeRisi
et al. 1997; Chu et al. 1998). The development of clustering
approaches further revealed that genes exhibiting similar
expression dynamics tend to be involved in similar bi-
ological processes, suggesting that potential functional
correlations between genes could be inferred by analyzing
coexpression patterns (Eisen et al. 1998). These concepts

were subsequently extended to transcriptional networks in
other organisms including mammals, highlighting the
power of such approaches in understanding relationships
between genes and their respective cellular pathways in
diverse tissues and developmental states (Su et al. 2004;
Zhang et al. 2004).

However, transcriptional control is only one of many
modes in which the flow of genetic information can be
regulated. Additional co- and post-transcriptional mecha-
nisms can dictate how a pre-mRNA is processed, where it
localizes as a mature transcript, and ultimately under what
context it is translated (Moore and Proudfoot 2009).
Genome-wide analyses of RNA-binding proteins (RBPs)
and their target transcripts have revealed similar underlying
principles to those found in the original microarray ex-
periments. These and other observations have led to the
development of the concept of RNA ‘‘regulons,’’ where
transcripts from functionally related genes have evolved
to be coordinately regulated by RBPs either co- or post-
transcriptionally (Keene 2007). A better understanding of
how these additional regulatory networks contribute to
development will therefore be important.
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Alternative splicing (AS) represents one such co- or post-
transcriptional process that can increase proteomic com-
plexity from a limited repertoire of genes (Chen and
Manley 2009; Nilsen and Graveley 2010). Recent studies
have suggested that AS is nearly ubiquitous in human
transcripts and is frequently controlled in a tissue-specific
manner (Pan et al. 2008; Wang et al. 2008). In particular,
extensive tissue-specific AS has been observed in the
mammalian nervous system and is thought to contribute
to both its molecular and cellular complexity (Lipscombe
2005). It is thus not surprising that many studies of tissue-
specific AS regulation have been directed at understanding
splicing in the nervous system (Li et al. 2007). In conjunc-
tion with biochemical and molecular genetic methodolo-
gies, several genome-wide approaches have proven valuable
in our understanding of how neural-specific splicing factors
regulate AS in the nervous system (Blencowe 2006; Ule
and Darnell 2007; Licatalosi and Darnell 2010). These
approaches have also helped define some of the first AS
regulatory networks, providing insights into their organi-
zational principles and new insights regarding how specific
groups of gene products function together in the develop-
ing and mature nervous system. This review discusses the
progress in our understanding of neural splicing factors
and their regulatory networks, and upcoming promises
and challenges in this exciting area of gene expression
research.

GENOME-WIDE APPROACHES FOR THE STUDY
OF ALTERNATIVE SPLICING

Several microarray platforms developed in the past decade
have enabled genome-scale analyses of pre-mRNA splicing.
These platforms typically make use of combinations of
short oligonucleotide probes that recognize exon and/or
exon junction sequences (Calarco et al. 2007; Ben-Dov et al.
2008; Moore and Silver 2008). These microarrays have been
instrumental in the large-scale profiling of splicing effi-
ciency in wild-type and mutant strains of budding yeast
(Clark et al. 2002; Pleiss et al. 2007), and in providing
quantitative measurements of AS across tissues, during
development, or upon disruption of splicing factor expres-
sion in metazoans (e.g., Johnson et al. 2003; Pan et al. 2004;
Stolc et al. 2004; Blanchette et al. 2005; Ule et al. 2005;
Sugnet et al. 2006; Boutz et al. 2007b; Fagnani et al. 2007;
Barberan-Soler and Zahler 2008; Calarco et al. 2009;
Hartmann et al. 2009). A number of general principles of
AS regulation have been deduced from these studies,
including evolutionary features associated with classes of
commonly regulated alternative exons and comparisons of
the dynamics and organization of AS and transcription
networks (Blencowe 2006; Calarco et al. 2007).

More recently, next-generation sequencing technologies
have been used to analyze polyadenylated transcripts at a
remarkable degree of precision and sensitivity. In these

approaches, cDNA fragments derived from mRNA popu-
lations are sequenced in a massively parallel manner (RNA-
Seq) and aligned to reference transcriptomes (Pepke et al.
2009; Wang et al. 2009). RNA-Seq analyses profiling
human cell lines and tissues reveal that >95% of multi-
exon genes have more than one splice variant, and these
isoforms are frequently differentially regulated across tis-
sues (Pan et al. 2008; Wang et al. 2008). Additional recent
studies have used this approach to identify novel and
developmentally regulated splice variants in Drosophila
and Caenorhabditis elegans (Gerstein et al. 2010; Graveley
et al. 2010; Ramani et al. 2011). Advantages of RNA-Seq
over microarray-based approaches are that novel exons and
splice junctions can be detected without a priori knowl-
edge, and cross-hybridization artifacts are not an issue.
However, the alignment of short oligonucleotide reads to
the transcriptome is not trivial, and RNA-Seq analyses are
currently less cost-effective than microarray experiments.
Despite these current limitations, read length and depth of
coverage are continuing to improve, and new software for
analyzing splicing from RNA-Seq data is constantly being
developed. Currently, both microarray and RNA-Seq ap-
proaches are actively used for genome-wide analysis of AS
(Fig. 1A), but RNA-Seq is quickly becoming the method of
choice (Blencowe et al. 2009; Wang et al. 2009).

Complementary to the approaches described above, AS
regulatory networks can also be uncovered by identifying
transcripts physically associated with specific splicing fac-
tors and ribonucleoprotein (RNP) complexes (Fig. 1B). In
these approaches, an RNA-binding protein and its associ-
ated RNP complex is immunoprecipitated from a cell
lysate, followed by purification and detection of bound
RNA transcripts. RNP complexes can be purified either
under native conditions (Tenenbaum et al. 2000) or under
more stringent conditions if cross-linking methods are used
(Niranjanakumari et al. 2002; Ule et al. 2003). The former
approach has the advantage that all transcripts in an RNP
complex can be identified. However, this approach runs the
risks of losing low-affinity yet specific in vivo interactions
and also transcript ‘‘reassociation,’’ in which transcripts
that do not normally associate with an RNP complex bind
during or following cell extraction (Mili and Steitz 2004).
Methods involving cross-linking circumvent this problem
because stringent purification conditions can be used but,
depending on the cross-linking reagent employed, may
only afford detection of transcripts that are directly bound
by the factor. In the most recent incarnation of these latter
methods, known as cross-linking and immunoprecipitation
(CLIP), the associated RNA is partially digested during the
protocol, leaving short associated fragments that represent
in vivo binding sites recognized by the RNA-binding pro-
tein of interest (Jensen and Darnell 2008). Additional modi-
fications to this protocol have further increased its resolu-
tion (Hafner et al. 2010; Konig et al. 2010). Recently, these
approaches have been coupled with microarray profiling
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or high-throughput sequencing to obtain genome-wide
snapshots of the repertoire of transcripts and binding sites
associated with specific splicing factors (e.g., Keene et al.
2006; Licatalosi and Darnell 2010).

Bioinformatics methods play an important role in the
analysis of the large catalog of splicing events identified by
the experimental approaches described above. Such analy-
ses have facilitated the discovery of splicing enhancer and
silencer elements associated with constitutive and alterna-
tive exons (Fairbrother et al. 2002; Zhang and Chasin 2004;
Yeo et al. 2007). Computational approaches have also been
successful in identifying cis-regulatory elements enriched in
tissue-specific AS events (Sugnet et al. 2006; Fagnani et al.
2007). Additional studies have also begun to identify
relationships between groups of cis-elements, other factors
influencing regulated splicing, and insights into the evolu-
tionary dynamics of AS (Yeo et al. 2004; Xing and Lee 2006;
Xiao et al. 2007; Friedman et al. 2008; Barash et al. 2010; Ke
and Chasin 2010; Keren et al. 2010; Zhang et al. 2010).
More recently, the utility of computational approaches

has been further exemplified in the
analysis of genome-wide chromatin
immunoprecipitation (ChIP) data sets,
which have revealed interesting connec-
tions between histone modifications and
splicing (Kolasinska-Zwierz et al. 2009;
Schwartz et al. 2009; Spies et al. 2009;
Tilgner et al. 2009; Huff et al. 2010; see
below).

Collectively, the above techniques
have become an indispensable set of
tools in the analysis of splicing regula-
tors. In the following section, we discuss
how these approaches have been used to
advance our understanding of tissue-
specific splicing factors and the sets of
AS events they regulate in the nervous
system.

NOVA-1 AND NOVA-2

The first neuro-oncological ventral an-
tigen (Nova-1) protein was originally
identified as a factor recognized by an-
tibodies produced in patients with para-
neoplastic opsoclonus myoclonus ataxia
(POMA), a motor control disorder re-
sulting from an autoimmune response
(Buckanovich et al. 1993). The Nova-1
antigen displays restricted expression in
the nervous system, specifically in the
hypothalamus, ventral midbrain, hind-
brain, and spinal cord. Nova-2, a second
antigen highly related to Nova-1, was
subsequently identified and found to be

expressed specifically in brain subregions, but with a re-
ciprocal pattern of expression to Nova-1 (Yang et al. 1998).
Both Nova proteins share sequence homology with the
RNA-binding protein hnRNP K (Buckanovich et al. 1993),
alluding to their role in RNA processing.

Initial biochemical, crystallographic, and molecular ge-
netic-based approaches indicated that the Nova proteins
bind YCAY repeat sequences, and a small number of target
transcripts were identified based on the presence of these
elements (Buckanovich and Darnell 1997; Lewis et al. 2000;
Dredge and Darnell 2003). A significant breakthrough was
brought forth by the development of a Nova-1 knockout
mouse. These knockout mice die shortly after birth from
motor deficiencies caused by apoptosis of brainstem and
spinal cord neurons and display a number of phenotypes
similar to those found in POMA (Jensen et al. 2000).
Intriguingly, the loss of Nova-1 altered the neuron-specific
alternative splicing patterns of target transcripts containing
YCAY repeat elements. These results established Nova-1 as
the first tissue-specific splicing regulator contributing to a

FIGURE 1. Experimental approaches for genome-wide analysis of alternative splicing. (A)
Quantitative splicing microarray profiling and RNA-Seq (middle panel) can be used to
measure splicing efficiency and relative isoform usage across different tissue types, stages of
development, in response to environmental stimuli, or in wild-type and mutant organisms (left
panel). Predictions stemming from either approach can then be confirmed with experimental
techniques such as semi-quantitative reverse transcription and PCR (RT-PCR; right panel). In
microarray profiling experiments, short oligonucleotide probes annealing to exon body and
exon junction sequences are used to monitor alternative splice site or exon usage. In RNA-Seq,
short oligonucleotide reads are aligned to exon body and junction sequences, and the number
of mapped reads can then be quantified to assess alternative splicing patterns. SF stands for
splicing factor. (B) Immuno-affinity-based approaches such as ribonucleoprotein immuno-
precipitation (RIP) and cross-linking and immunoprecipitation (CLIP) can be used to purify
RNA-binding protein:pre-mRNA complexes (left panel). The purified RNA can then be
sequenced, followed by alignment of the resulting short nucleotide reads to a reference
genome of interest (middle panel). These genome-wide binding data provide a snapshot of the
repertoire, or ‘‘regulon,’’ of a particular RNA-binding protein and can be used to infer
functional relationships among genes encoding target transcripts. Alternatively, these data can
be combined with RNA-Seq and microarray profiling data to obtain RNA maps (right panel)
that correlate binding site positions with splicing regulatory differences observed upon loss or
depletion of a given splicing factor.
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developmental program and further implicated this factor
as a causative agent in neurological disorders.

The functional analysis of the Nova proteins was greatly
facilitated by the development of CLIP (Ule et al. 2003).
The initial application of CLIP identified 34 target mRNAs
associated with the Nova proteins. These target transcripts
were enriched in genes with known roles at the synapse, in
particular, inhibitory synaptic transmission. Ule and col-
leagues further analyzed mRNA samples from brain and
immune system tissues of wild-type and Nova-2 knockout
mice using AS microarrays (Ule et al. 2005). More than
50 AS events from the neocortex were identified that
required Nova-2 for proper regulation, corresponding to
z7% of all brain-specific AS events detected in their
profiling experiments. This further suggested that Nova-2
plays a significant role in regulating brain-specific AS. In
agreement with the CLIP analysis, a significant proportion
of genes with Nova-2-regulated AS events were associated
with functions at the synapse, in particular, synaptic de-
velopment, synaptic transmission, cell–cell signaling, and
cortical actin organization. Intriguingly, many of the target
genes with regulated AS events interact with each other in
protein complexes, suggesting that Nova-2 regulates a
network of synaptic proteins and that it plays an impor-
tant role in affecting physical interactions between these
factors.

Using this set of AS events, a bioinformatics approach
was used to examine the effects on exon inclusion resulting
from the positional binding of the Nova proteins to YCAY
repeats in regions surrounding these alternative exons (Ule
et al. 2006). The resulting ‘‘RNA map’’ predicted that Nova
could act as either an enhancer or a repressor of exon
inclusion depending on the locations of the YCAY elements
in pre-mRNA transcripts. These predictions were subse-
quently validated experimentally and led to testable hypoth-
eses regarding the mechanism by which Nova regulates AS.
Specifically, when bound to exonic YCAY elements, Nova
blocks U1 snRNP association with the 59 splice site. How-
ever, when bound in the intronic region downstream from
an alternative exon, Nova stimulates splicing complex
formation. These results indicated how genome-wide ap-
proaches can provide key regulatory insights into splicing
mechanisms. As new technologies become available, our
ability to uncover novel insights continues. For example,
Licatalosi et al. (2008) subsequently coupled the CLIP
protocol with high-throughput sequencing (HITS-CLIP,
also referred to as CLIP-Seq) and also used a more com-
prehensive AS microarray to identify an extensive Nova
regulatory network. In addition to confirming and further
refining the bioinformatically predicted RNA map, the
investigators identified a new role for Nova in regulating
alternative polyadenylation. This new regulatory role for
Nova appears distinct from its role in AS, since transcripts
regulated at the level of poly(A) site selection generally do
not have Nova-regulated alternative exons.

PTB and PTBP2

The presence of a tissue-restricted counterpart of the
ubiquitously expressed polypyrimidine tract binding pro-
tein (PTB, also known as PTBP1 or hnRNP I) was initially
detected in rat brain extracts based on its different elec-
trophoretic mobility but similar RNA-binding activity to
PTB (Ashiya and Grabowski 1997). Two independent studies
subsequently identified and cloned PTBP2 (also known as
nPTB and brPTB), confirming that it is a tissue-restricted
paralog of PTB (Markovtsov et al. 2000; Polydorides et al.
2000). Markovtsov et al. (2000) identified PTBP2 as a key
factor playing a role in the neuronal-specific splicing of the
N1 alternative exon from the c-src transcript. Polydorides
et al. (2000) identified PTBP2 as a protein that interacts
with Nova-1/2, and further demonstrated its ability to
antagonize the stimulatory effect of Nova proteins in the
splicing of exon E3A in GlyRa2 transcripts. Both studies
revealed an enriched expression pattern of PTBP2 in brain
and testis, suggesting that this factor might act as a key
modulator of alternative splicing patterns in these tissues.

Although PTBP2 has high sequence similarity to PTB, by
virtue of its restricted expression pattern and other prop-
erties, it has the ability to establish tissue-specific splicing
programs. Data from in vitro splicing assays indicate that
PTBP2 can act either neutrally or as a weaker repressor
than PTB in preventing c-src N1 exon inclusion (Markovtsov
et al. 2000). Additionally, PTBP2 binds to an intronic
region of the c-src pre-mRNA critical for tissue-specific
splicing of exon N1, known as the distal control sequence,
with higher affinity than PTB, and this binding is stimu-
lated by generally expressed cofactors such as hnRNP H
(Markovtsov et al. 2000). These results and others have
suggested that a combination of differential intrinsic RNA-
binding affinity and interactions with coregulators likely
play a role in the distinct properties of PTB and PTBP2
(Charlet et al. 2002; Gromak et al. 2003). Further mecha-
nistic studies on the repressive role of PTB in a non-
neuronal context have revealed that intron-bound PTB can
block pre-spliceosomal E complex formation by preventing
59-splice-site-dependent recruitment of U2AF, and also
blocking the transition from exon definition to intron
definition (Sharma et al. 2005, 2008). In light of this evi-
dence, it is possible that PTBP2 somehow acts distinctly at
these steps in spliceosome assembly and commitment. Since
the above studies have been based on specific model pre-
mRNA substrates, additional work is required to help de-
termine the generality of these principles.

Additional focused and genome-wide analyses of PTB
and PTBP2 have shed light on the mechanism by which
these factors regulate AS. Boutz et al. (2007b) demonstrated
that both proteins display mutually exclusive expression
patterns in the brain, with PTB being expressed in glial and
non-neuronal cells, and PTBP2 in neurons. When PTB is
present at sufficient levels, it represses splicing of exon 10 in
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PTBP2 transcripts, producing an isoform containing a pre-
mature termination codon (PTC) that is degraded by the
nonsense-mediated mRNA decay (NMD) pathway (Boutz
et al. 2007b; Spellman et al. 2007). PTB also appears to
further inhibit PTBP2 expression or turnover at the protein
level independent of its effect on splicing of exon 10. Thus,
down-regulation of PTB should lead to the expression of
functional PTBP2. In neurons, the silencing of PTB ex-
pression is achieved by the neuron-specific micro-RNA
miR-124, which effectively derepresses PTBP2 exon 10
splicing, although efficient inclusion of this exon in
neurons also requires positive-acting splicing regulators
(Makeyev et al. 2007; Calarco et al. 2009; see below). This
mutually exclusive expression pattern appears to be estab-
lished after cells have committed to a neuronal fate, because
neural progenitor cells appear to express both PTB and
PTBP2 (Boutz et al. 2007b).

To assess functional consequences resulting from mod-
ulating PTB and PTBP2 levels in a neuronal context, Boutz
et al. (2007b) performed AS microarray profiling experi-
ments comparing the transcriptomes of neuroblastoma
cells depleted of each splicing factor alone or in combina-
tion. These experiments revealed AS events with altered
splicing patterns that depended solely on PTB or PTBP2
expression, as well as events that required both factors for
regulation. Notably, events showing altered AS patterns
undergo either increased inclusion or increased skipping,
suggesting that these factors can act both as repressors
or activators of splicing. Additional genome-wide experi-
ments such as CLIP-Seq in the same neuroblastoma cells
or even relevant neural tissues will help confirm whether
these regulated events are direct targets. Additionally, a
subset of the genes encoding transcripts with AS events
regulated by PTB and PTBP2 have previously known
roles in neuronal differentiation and function, providing
a first glimpse into the splicing network regulated by these
factors.

Two recent genome-wide analyses have provided further
insights into the repertoire of transcripts controlled by PTB
and PTBP2 and the mechanisms by which they operate.
Xue et al. (2009) performed CLIP-Seq in HeLa cells to
identify sites in the transcriptome where PTB binds in vivo.
These binding sites were often found in introns, and
enriched in pyrimidine-rich sequence elements. Intrigu-
ingly, an examination of the effect of shRNA-mediated
knockdown of PTB revealed that PTB can also act as an
enhancer of exon inclusion when its intronic binding sites
closely flank neighboring constitutive exons. In another
study, Llorian et al. (2010) knocked down PTB and PTBP2
expression in HeLa cells and used Affymetrix splicing
microarrays to identify hundreds of AS events regulated
by these factors. Analysis of these PTB/PTBP2-dependent
AS events using an AS microarray data set from a separate
study profiling diverse human tissues (Castle et al. 2008)
revealed that they were often differentially regulated in

nervous system and muscle tissues. These results are
consistent with observations that pyrimidine-rich motifs
are often associated with brain-specific AS events in mouse
(Fagnani et al. 2007). Notably, these differentially regulated
AS events are associated with genes enriched in G-protein
signaling and regulation of the cytoskeleton and membrane
traffic. An investigation of cis-elements enriched in PTB-
regulated transcripts identified pyrimidine-rich motifs that
exhibited positional bias depending on the regulatory effect.
For instance, PTB was found to act as a repressor when
bound in an intron upstream of an alternative exon or
within the alternative exon itself, but can function as an ac-
tivator when bound to an intronic element downstream
from the alternative exon (Llorian et al. 2010). Finally, ad-
ditional motifs belonging to the Fox and MBNL family of
splicing regulators were also significantly associated with
PTB-regulated AS events, suggesting that these regulators
more generally act in combination with PTB and PTBP2, in
agreement with previous studies on model pre-mRNA tran-
scripts (Jin et al. 2003; Ladd et al. 2005; Underwood et al.
2005). The proposed RNA maps from Xue et al. (2009) and
Llorian et al. (2010) do not perfectly overlap, likely due to
the different methods from which they were derived. How-
ever, they have each provided novel mechanistic insights
into PTB/PTBP2 AS regulation that warrant further inves-
tigation. Collectively, these studies have also elaborated the
repertoire of tissue-specific AS events controlled by these
factors.

nSR100/SRRM4

Members of the SR family and SR-related splicing factor
proteins were first identified through genetic analyses of the
sex-determination pathway in Drosophila, and subsequently
by their ability to influence splicing activity in vitro in HeLa
extracts (Amrein et al. 1988; Goralski et al. 1989; Ge and
Manley 1990; Krainer et al. 1990). Since their initial dis-
covery, many additional members have been identified, and
SR and SR-related proteins currently represent a major
class of constitutive and alternative splicing regulators (Lin
and Fu 2007; Long and Caceres 2009). A hallmark of these
splicing factors is a protein domain consisting of stretches
of alternating arginine/serine dipeptide repeats (known as
the RS domain), implicated in facilitating important pro-
tein–protein and protein–RNA interactions during spliceo-
some recruitment and catalysis (Wu and Maniatis 1993;
Shen and Green 2004). SR proteins also possess one or two
RNA recognition motifs (RRMs), allowing them to interact
with pre-mRNAs in a sequence-specific manner. SR-related
proteins like SRm160 and SRm300 do not possess canon-
ical RRMs and, instead, are believed to function by bridg-
ing interactions across splice sites by binding to compo-
nents of the splicing machinery and with other SR proteins
(Blencowe 2000; Sharma et al. 2008). Nearly all SR family
and SR-related proteins are expressed ubiquitously but at
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varying levels across tissues, and it has been proposed that
the variation in expression of these factors contributes
to tissue-specific splicing decisions (Zahler et al. 1992;
Hanamura et al. 1998; Chen and Manley 2009). Recent
evidence suggests that a subset of RS domain proteins with
highly restricted expression patterns exists and regulates
networks of tissue-specific AS events.

Using a computational approach, we created a database
of RS-domain protein genes and mapped the expression
profiles of these factors using existing microarray data sets
(Calarco et al. 2009). The neural-specific SR-related protein
of 100 kDa (nSR100, also known as SRRM4) was identified
from this analysis on the basis of its specific and robust
expression in brain and sensory organ tissues. We sub-
sequently demonstrated that depletion of nSR100 pre-
vented both neurite outgrowth in differentiating neuro-
blastoma cells as well as neural stem cell formation and
maintenance. Consistent with these neural differentiation
defects observed in vitro, reduced expression of nSR100 in
developing zebrafish embryos impaired neurite outgrowth
and nervous system development in vivo. Alternative
splicing microarray profiling revealed that nSR100 regu-
lates a network of exons that are spliced in a nervous-
system-specific manner, and that it acts primarily as an
activator of exon inclusion. Analysis of this splicing
network revealed that genes regulated by nSR100 are
enriched in processes associated with cytoskeleton regula-
tion and neural differentiation, suggesting that the aber-
rant regulation of these events may be responsible for the
observed phenotypes.

Further investigation of this network of AS events
identified several cis-regulatory elements enriched in the
intronic regions flanking nSR100-regulated exons (Calarco
et al. 2009). Most prominently enriched were pyrimidine-
rich elements, known to be also recognized by PTB and
PTBP2. Interestingly, nSR100 promotes the inclusion of
exon 10 in PTBP2 transcripts, which, as described above,
modulates the levels of PTBP2 through an NMD-depen-
dent mechanism (Boutz et al. 2007b; Spellman et al. 2007),
indicting an intricate interplay between these AS regulatory
factors. Consistent with these observations, both PTB and
PTBP2 were found to regulate nearly all nSR100-dependent
AS events. However, the effects of nSR100 on AS could
not be explained solely by its influence on PTBP2 levels,
because additional biochemical evidence demonstrated that
nSR100 can directly and specifically promote the inclusion
of its target alternative exons. Future work will be directed
at better understanding how nSR100 works together with
PTB, PTBP2, and other splicing regulators to regulate
neural-specific AS in vivo.

The discovery that nSR100 acts as an AS regulator
indicates that a subset of SR and SR-related proteins
represent a novel class of tissue-specific splicing regulators.
Indeed, our database of RS-domain protein genes has iden-
tified candidate additional members of this family that dis-

play cell- or tissue-restricted expression patterns (Calarco
et al. 2009). Additional work aimed at understanding the
role of these other RS-domain-containing genes in cellular
differentiation and development will be important. Addi-
tionally, nSR100 is only conserved in vertebrate species, in
stark contrast with other SR and SR-related proteins that
are conserved across metazoans (Barbosa-Morais et al.
2006). The relatively recent evolution of nSR100 suggests
that it may have evolved to contribute to more complex
aspects of vertebrate nervous system development and
function. It will be interesting whether other tissue-re-
stricted RS-domain genes also display similar evolutionary
features.

Fox splicing regulators

Unlike most cis-elements recognized by RNA-binding pro-
teins that are typically degenerate, several studies identified
the conserved hexanucleotide sequence (U)GCAUG en-
riched in introns downstream from brain-specific alterna-
tive exons (Brudno et al. 2001; Minovitsky et al. 2005). It
was subsequently discovered that a family of tissue-specific
RNA-binding proteins, homologous with the C. elegans
feminizing on X (FOX-1) protein involved in dosage com-
pensation, regulated tissue-specific AS events through in-
teraction with this cis-element (Jin et al. 2003; Nakahata
and Kawamoto 2005; Underwood et al. 2005; Ponthier
et al. 2006). Both mammalian Fox-1 (also known as
A2BP1) and Fox-2 (also known as Fxh or RBM9) show
enriched or highly restricted expression in brain, heart, and
skeletal muscle tissues. A third member of the family with
similar RNA-binding specificity, Fox-3, has recently been
identified as the antigen recognized by the anti-NeuN
(neuronal nuclei) antibody, which for nearly two decades
has served as a specific marker of most classes of post-
mitotic neurons (Kim et al. 2009). A number of molecular
genetic and biochemical studies on a small number of pre-
mRNA substrates have indicated that the Fox family of
splicing regulators can act as position-dependent splicing
activator or repressor proteins (Jin et al. 2003; Nakahata
and Kawamoto 2005; Underwood et al. 2005; Ponthier
et al. 2006). However, it remained unclear whether these
observations could generally be applied to Fox-dependent
splicing regulation. An understanding of the network of
transcripts regulated by these splicing regulators would
yield novel insights into mechanisms that govern the
development of neurons and muscle cells. Recent ge-
nome-wide analyses have begun to shed light on some of
these questions.

Zhang et al. (2008a) mined 28 sequenced vertebrate
genomes for Fox-binding sites in exons and 200 nt of
flanking intron sequence. Thousands of putative targets
were identified, hundreds of which are found in the vicinity
of known alternative exons. AS patterns of candidate Fox-
associated transcripts across tissues were further assessed by
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microarray profiling experiments, associating the location
of Fox-binding sites with potential tissue-specific regulation
in brain and muscle tissues. The results suggest that Fox-
binding sites are more often enriched in intronic regions
downstream from alternative exons, and when present allow
Fox proteins to activate inclusion of alternative exons. How-
ever, when binding sites are present in upstream intronic
regions, Fox generally acts as a splicing repressor. Intrigu-
ingly, complex regulatory patterns were also observed in
which candidate Fox-dependent AS events displayed in-
creased inclusion or skipping in either brain or muscle
tissues, but not in both, indicating that combinatorial in-
teractions with other splicing regulators play a role in reg-
ulating these events. GO enrichment analysis of the Fox
splicing network revealed that genes with Fox-regulated AS
events have a role in neuromuscular function, consistent
with the tissues where these factors are enriched. Addition-
ally, genes with Fox-dependent AS events were frequently
associated with diseases, including several neurological,
heart, and muscular disorders. Mutations in the Fox-1 gene
or alteration of its expression has been associated with several
neurological disorders and heart disease (Kaynak et al. 2003;
Bhalla et al. 2004; Szatmari et al. 2007), thus making the
identified splicing regulatory network an excellent data set to
identify potentially interesting relationships between RNA
targets and the etiology of some of these diseases.

In another study, Yeo et al. (2009) observed that Fox-2 is
robustly expressed in human embryonic stem cells (hESCs).
The investigators performed CLIP-Seq experiments to
identify Fox-2-binding sites in vivo. Fox-2-binding clusters
were identified in nearly 2000 protein-coding genes, sug-
gesting a large network of targets potentially regulated by
this factor in hESCs. Interestingly, further analysis of the
CLIP tag clusters found enrichment of not only the
UGCAUG consensus Fox-binding motif, but also other
consensus elements, suggesting potential alternative modes
of RNA recognition through their interactions with addi-
tional factors. Investigating the effects on splicing patterns
of interacting transcripts, the authors found that down-
stream intronic binding sites lead to exon inclusion, while
upstream intronic sites lead to repression by Fox-2,
consistent with the results of Zhang et al. (2008a). Genes
encoding transcripts bound by Fox-2 were enriched in
splicing factors and kinases, suggesting that this protein
may act to coordinate a network of splicing events
controlled by multiple factors, and also signaling cascades
important for maintenance of the ESC state. Supporting
this notion, the investigators observed that knockdown of
Fox-2 leads to a specific and dose-dependent increase in
cell death of hESCs. Thus, the network of targets regulated
by Fox-2 will likely provide insights into stem cell biology.

Two recent AS profiling studies have also found a con-
nection between the Fox family of splicing regulators and
breast and ovarian cancer (Venables et al. 2009; Lapuk et al.
2010). These studies implicate the altered regulation of

Fox-dependent splicing networks in various cancers, and
analysis of these networks should uncover how these
isoforms contribute to the development and progression
of the disease.

Sam68

Sam68 (Src-associated in mitosis, 68 kDa) was originally
identified as a phosphorylation substrate of the tyrosine
kinase Src during mitosis and subsequently found to be
related to a family of RNA-binding proteins now known as
STAR (signal transduction and activation of RNA) or GSG
(GRP33, Sam68, GLD-1) domain proteins (Fumagalli et al.
1994; Taylor and Shalloway 1994; Vernet and Artzt 1997).
Sam68 is proposed to play roles in numerous aspects of
mRNA metabolism, including AS, mRNA export and lo-
calization, and translation regulation (Lukong and Richard
2003). Several studies have also suggested links between this
factor and various cancers (Rajan et al. 2008). Although
expressed in multiple tissues, Sam68 expression is induced
at sites of neurogenesis in mice (Lim et al. 2006). Mice
lacking Sam68 display motor coordination deficits and
male sterility, suggesting that this factor is involved in as-
pects of neuronal function and fertility (Lukong and
Richard 2008; Paronetto et al. 2009). Given these intriguing
phenotypes, it has been an important goal to identify the
network of transcripts regulated by Sam68. Several studies
have identified mRNAs bound to Sam68 both in neurons
and in spermatocytes (Grange et al. 2009; Paronetto et al.
2009). Additionally, a small number of Sam68-dependent
AS events from single-gene analyses have been discovered
(Matter et al. 2002; Paronetto et al. 2007; Pedrotti et al.
2010).

To better define the network of AS events regulated by
Sam68, AS microarray profiling was recently performed in
mouse neuroblastoma cells treated with shRNAs targeting
Sam68 expression (Chawla et al. 2009). From more than
1000 profiled AS events, about 30 Sam68-dependent AS
events were identified. Consistent with other studies of
splicing regulators, Sam68 appears to function both as
an enhancer or repressor of exon inclusion. A search for
previously identified AU-rich motifs known to bind
Sam68 revealed an enrichment of these cis-elements in
intronic regions flanking Sam68-regulated alternative
exons. Mutagenesis experiments studying a Sam68-regu-
lated exon in epsilon sarcoglycan (Sgce) transcripts dem-
onstrated that multiple Sam68-binding sites are important
in order to achieve full regulation by the RNA-binding
protein.

Given that Sam68 is activated during neurogenesis,
Chawla et al. (2009) used P19 cells, which can be differen-
tiated into neuronal-like cells, to assess the role of Sam68 in
neuronal differentiation. Sam68 expression was found to
be induced during P19 cell differentiation, and AS events
from the identified Sam68 regulatory network were found
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to undergo splicing changes during this process. Intrigu-
ingly, depletion of Sam68 inhibits P19 differentiation and
alters the regulation of these differentiation-dependent AS
events. Thus, this work has uncovered an important net-
work of isoforms that contributes to aspects of neuronal
differentiation. It will be interesting to determine whether
any of these targets are causal in the motor coordination
deficits in Sam68 null mice.

Additional neural-specific splicing regulators

Several additional neural-restricted RNA-binding proteins
have been found to regulate AS, but to date no genome-
wide analyses of these factors have been conducted in
tissues of the nervous system. Mammalian Hu proteins,
homologs of the Drosophila splicing regulator ELAV, are
represented by four family members, three of which (HuB,
HuC, and HuD) are highly expressed in nervous system
tissues (Hinman and Lou 2008). Similar to the Nova pro-
teins, the Hu proteins were also identified as neuronal
antigens recognized by antibodies produced in patients
with paraneoplastic disorders (Szabo et al. 1991). Further-
more, HuD knockout mice display a number of phenotypes
both during development and in adulthood, including
impaired motor and reflex skills, and aberrant control of
neural progenitor cell proliferation and differentiation
(Akamatsu et al. 2005). Work on these factors has indicated
that they recognize AU-rich sequence elements and are
involved in many aspects of mRNA metabolism, including
AS (Hinman and Lou 2008).

Two additional classes of RNA-binding proteins with
family members expressed specifically in nervous system
and/or muscle tissues are the muscleblind-like (MBNL) and
CUGBP/ETR-like (CELF; also known as Bruno-like) factors
(Barreau et al. 2006; Pascual et al. 2006). These factors have
been implicated in neurological disorders and in CUG
trinucleotide expansion diseases such as myotonic dystro-
phy (Cooper et al. 2009; Gallo and Spickett 2010). These
factors are also involved in several aspects of mRNA me-
tabolism, including AS (Ladd et al. 2001; Ho et al. 2004).
Several studies using model pre-mRNA substrates have
demonstrated that MBNL and CELF bind CUG-repeat and
UG-rich elements, respectively, and typically antagonize
each other and other factors such as PTB in AS regulation
(Charlet et al. 2002; Ho et al. 2004). Recent genome-wide
analyses of regulated AS during heart development and
myogenic differentiation have revealed that MBNL and
CELF proteins can be dynamically and reciprocally regu-
lated (Kalsotra et al. 2008; Bland et al. 2010). The altered
expression of these factors helps coordinate a network of
splicing transitions that take place between embryonic and
adult heart tissue or between undifferentiated and differ-
entiated myoblasts. Work from Dembowski and Grabowski
has further demonstrated that CUGBP2 (also known as
NAPOR, ETR-3, CELF2, and BRUNOL3) can regulate

neural-specific skipping of the NI exon in NMDA R1
receptor transcripts by binding to UG-rich cis-elements
flanking the branchpoint sequence upstream of the alter-
native exon (Dembowski and Grabowski 2009). Subsequent
computational analyses identified additional exons regu-
lated according to this branchpoint ‘‘perimeter’’ binding
model, suggesting that this mode of regulation by CELF
factors may be a general mechanism by which they regulate
exon skipping in the brain.

More than a decade ago, the Quaking (qk) gene was
identified as the locus mutated in Quaking mice, which
exhibit rapid tremors due to a deficiency in myelination of
the nervous system (Ebersole et al. 1996). The qk locus
encodes several alternative isoforms of QKI, which are
related to the STAR family of RNA-binding proteins. Sev-
eral lines of evidence have connected QKI proteins with
regulating AS of transcripts associated with myelination.
For instance, the nuclear isoform QKI-5 represses the
inclusion of exon 12 in myelin-associated glycoprotein
(MAG) transcripts, which encode a transmembrane protein
known to play a role in the initiation and maintenance of
the myelin sheath (Wu et al. 2002). Additionally, QKI
proteins can indirectly regulate AS through the modulation
of other splicing regulators. Specifically, QKI-6, a cytoplas-
mic variant encoded by the qk locus, represses the trans-
lation of hnRNPA1, which, in turn, regulates MAG exon 12
AS (Zhao et al. 2010). Several other transcripts encoded by
genes relevant to myelin formation and maintenance
display altered splicing patterns in Quaking mice (Wu
et al. 2002). It will be interesting to determine whether
similar regulatory mechanisms also apply to other QKI
targets. As aberrant regulation of QKI in humans has
been linked to schizophrenia (Aberg et al. 2006a,b), an
in-depth analysis of the repertoire of transcripts regu-
lated by these factors may provide helpful insights into
the disease.

Taken together, an understanding of the network of
splicing events regulated by these proteins and a better
characterization of the mechanisms by which they regulate
AS will help to elucidate the physiological roles of these
RNA-binding proteins in nervous system development and
function.

FUTURE PROMISES AND CHALLENGES AHEAD

Identification of new neural splicing regulators

Although several neural-restricted splicing regulators have
been identified, it is unlikely that these factors alone ac-
count for the prominent complexity generated by AS in the
nervous system. Additional factors that regulate AS in the
nervous system likely exist, and their detailed characteriza-
tion will be important. Several strategies have emerged over
recent years to facilitate the identification of new AS reg-
ulators. These general strategies are applicable to studies of
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neural AS regulation. For instance, large-scale gene expres-
sion and in situ hybridization studies have been conducted
in a number of mammalian and vertebrate organisms (Su
et al. 2004; Thisse et al. 2004; Zhang et al. 2004; McKee
et al. 2005; Lein et al. 2007). Intriguingly, in one of these
studies, it was found that many RNA-binding proteins are
variably expressed in different brain regions, suggesting
specialized roles for these factors (McKee et al. 2005). These
studies have provided valuable data sets that can be mined
for RNA-binding proteins and other proteins involved in
pre-mRNA processing with restricted expression patterns
in the nervous system, and will help focus efforts on
characterizing additional AS regulators of interest.

Several luciferase- and fluorescent protein-based re-
porters that provide a readout of AS patterns for specific
transcripts have recently been developed (Wang et al. 2004;
Levinson et al. 2006; Orengo et al. 2006; Stoilov et al. 2008;
Warzecha et al. 2009; Moore et al. 2010; Younis et al. 2010).
These reporters have facilitated large-scale RNAi, cDNA
overexpression, or small-molecule screens to uncover pro-
teins and compounds that can modulate AS under a variety
of conditions and cellular states. These
reporters have also been used in model
organisms such as mouse and C. elegans
with the goal of identifying factors regu-
lating tissue- and developmental-stage-
specific AS events (Bonano et al. 2007;
Kuroyanagi et al. 2010). We have recently
applied these fluorescent reporters to
analyze AS in the C. elegans nervous
system and have observed a remarkable
degree of regulatory complexity, with
differential splicing between individual
neuronal subtypes (JA Calarco, M Zhen,
and BJ Blencowe, unpubl.). Large-scale
forward or reverse genetic screens mak-
ing use of such reporters in model
organisms, as well as in cellular models
of neural differentiation, will serve as ex-
cellent platforms for future discovery of
neural splicing regulators. Moreover, the
unbiased nature of these screens will help
identify additional factors that may di-
rectly or indirectly contribute to splicing
regulation, such as chromatin-modifying
factors, signaling proteins, and non-coding
RNAs, which are all known to influence
AS (Lynch 2007; Allemand et al. 2008;
Khanna and Stamm 2010; Luco et al.
2010; Tripathi et al. 2010).

Finally, biochemical analyses of RNP
complexes have been greatly facilitated
by advances in mass spectrometry over
the past few years. These techniques have
allowed the identification of components

of RNP complexes assembled on in vitro–synthesized tran-
scripts, including the spliceosome itself (Hartmuth et al. 2002;
Jurica et al. 2002; Zhou et al. 2002; Sharma et al. 2005). Using
related approaches, model RNA substrates containing cis-
elements associated with neural-specific AS events could be
incubated with extracts derived from neural cells, and any
bound proteins could be purified and theoretically identified
(Butter et al. 2009). The above approaches will be instru-
mental in uncovering novel neural-specific splicing factors.

Determining the role of tissue-specific isoforms

Networks of isoforms regulated by specific splicing factors
can provide informative functional relationships among
gene products (Fig. 2A). For instance, several studies have
suggested that proteins encoded by transcripts with AS
events regulated by a given splicing factor physically as-
sociate with each other through protein–protein interac-
tions (PPIs) (Ule et al. 2005; Calarco et al. 2009; Warzecha
et al. 2010). These observations suggest that tissue-specific
AS networks may have evolved in part to fine-tune PPIs for

FIGURE 2. Regulatory outcomes in alternative splicing networks and cross-talk between
factors acting at multiple layers of gene regulation. (A) Coordinated alternative splicing events
from an alternative splicing network (isoforms regulated by a specific splicing factor are
displayed in red in the top and bottom panels) could result in the modification of protein–
protein interactions (top left panel), modulation of genetic interactions within biological
pathways (top right panel), altered post-translational modification sites in targeted proteins
(bottom left panel), and altered RNA or protein localization in the cell (bottom right panel).
Both single candidate gene studies and high-throughput approaches can be used to understand
the functional consequences of these regulatory events. (B) Cross-regulation (black lines and
arrows) has been observed between various classes of trans-acting regulators, such as
chromatin-modifying proteins (blue), splicing factors (red), transcription factors (light blue),
RNA stability or localization factors (green), translational regulators (purple), and non-coding
RNAs. Cross-regulatory interactions have also been observed between members acting in the
same process (gray dashed lines and arrows). The diagram displays both known regulatory
events as well as theoretical events. A detailed understanding of how each of these factors
interact and regulate each other will be essential for a complete understanding of the
underlying regulatory networks they control.
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a given cell or tissue type and are consistent with data
indicating that a significant proportion of alternative exons
map to the surfaces of proteins, potentially influencing PPIs
(Wang et al. 2005). Approaches that can be performed on a
large scale, such as yeast two-hybrid assays (Bruckner et al.
2009) or high-throughput mammalian coimmunoprecipi-
tation assays (Barrios-Rodiles et al. 2005), can be used to
systematically test how PPIs are affected by individual
splice variants in these networks. We are applying such ap-
proaches to study the influence of nSR100 on PPI networks
in the nervous system (J Ellis, M Barrios-Rodiles, JA
Calarco, J Wrana, and BJ Blencowe, unpubl.).

Neural-specific AS events could also influence the lo-
calization of RNA or protein isoforms by inserting or re-
moving critical localization signals. Theoretically, each
isoform in a given regulatory network could be tagged
with a fluorescent or other detectable reporter such that its
localization pattern can be analyzed. Recent advances in
high-throughput microscopy (Walter et al. 2010) should
allow systematic analysis of isoform-specific localization.
Additionally, regulated exons could overlap with post-
translational modification sites in protein isoforms. For
instance, a recent study revealed that Nova-regulated al-
ternative exons encode putative phosphorylation sites more
often than constitutive or other alternative exons (Zhang
et al. 2010). It will be interesting to determine the biological
significance of the altered phosphorylation of targeted
proteins and whether the selective insertion or removal of
phosphorylation sites by AS is a general hallmark of all
splicing regulatory networks.

Although the techniques described above will be in-
formative, the most definitive way to determine the func-
tional consequences of altered splicing of a regulated exon
will ultimately involve molecular genetic approaches. The
selective elimination or introduction of specific isoforms in
transgenic animals has proven a definitive and effective
means of assessing the functional contribution of these
variants (Beffert et al. 2005; Demir and Dickson 2005).
Similar approaches can be used to interrogate isoforms in
AS regulatory networks, and recent examples emerging
from genetic analysis of Nova-regulated AS events illustrate
their power. For example, phenotypic analyses of Nova
knockout mice have revealed defects in neuromuscular
junction (NMJ) morphology and impaired neuronal mi-
gration during development (Ruggiu et al. 2009; Yano et al.
2010). The aforementioned approaches used to identify
Nova-regulated isoforms identified target exons in agrin
and disabled-1 transcripts, which are genes with known
roles in NMJ formation and neuronal migration, respec-
tively. Transgenes expressing the specific isoforms affected
by loss of Nova significantly rescued the NMJ and neuronal
migration defects, suggesting that these splice variants are
indeed required for nervous system development.

Such genetic analyses in mammalian or even vertebrate
model organisms demand significant time investments. It

is therefore not feasible to systematically assess the function
of all isoforms identified in a regulatory network in this
manner. The complementary use of RNAi-based approaches
in cellular models of neuronal physiology, development, and
differentiation may help prioritize which isoforms should be
further analyzed in transgenic animal models. Alternatively,
in other model organisms used in neurobiology such as
C. elegans and Drosophila (Sattelle and Buckingham 2006;
Sengupta and Samuel 2009), transgenic strains can be made
relatively faster and on a larger scale, making such genetic
analyses more tractable. Ultimately, to obtain a complete
landscape of isoform functions in a splicing regulatory
network, a combination of these approaches should be used
to maximize both the scale and level of detail required to
uncover novel biological insights.

Examining relationships among splicing factors

Numerous biochemical studies have revealed that tissue-
specific splicing factors act in concert with other tissue-
specific or ubiquitously expressed splicing regulators to
regulate AS (Chen and Manley 2009). It is therefore be-
coming apparent that integrating regulatory networks of
individual splicing factors is necessary in order to achieve
an understanding of combinatorial control of tissue-spe-
cific AS patterns. Another emerging theme is that altered
expression or activity of factors defined as ‘‘core’’ compo-
nents of the spliceosome can lead to specific changes in AS
patterns (Park et al. 2004; Yu et al. 2008; Zhang et al. 2008b;
Saltzman et al. 2011). A better understanding of how these
core splicing regulators can interact with the landscape of
other tissue-specific and generally expressed auxiliary
factors will be important.

As mentioned above, splicing factors can be dynamically
regulated during development or in response to certain
stimuli. Temporal regulation of the expression of CELF and
MBNL regulators during heart development has been
shown to play an integral role in establishing embryonic
or adult splicing patterns (Kalsotra et al. 2008). Depolar-
ization-induced changes in the nuclear accumulation of
hnRNPA1 and Fox-1 in neurons lead to modulation of
exon inclusion in target transcripts encoding synaptic pro-
teins (An and Grabowski 2007; Lee et al. 2009). A recent
study has also demonstrated that SR proteins can dynam-
ically alter the repertoire of target transcripts they interact
with during neuronal differentiation (Anko et al. 2010).
These examples indicate that most genome-wide analyses of
splicing regulatory networks have only provided a snapshot
of the landscape of transcripts bound to and influenced by
a given splicing factor. Large-scale analyses over develop-
mental time courses and under different physiological
perturbations will be informative to address some of these
limitations.

Splicing factors frequently regulate AS events within their
own transcripts and in those encoding other RNA-binding
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proteins. These auto- and cross-regulatory events often
insert or remove PTC-containing exons that lead to the
selective degradation of spliced transcripts by the NMD
pathway, ultimately influencing the overall abundances of
these factors (Lareau et al. 2007b; Ni et al. 2007; Spellman
et al. 2007; Saltzman et al. 2008). Alternatively, the activity
of splicing regulators was also found to be influenced by
AS events in their own transcripts creating dominant negative
isoforms or variants with altered post-translational mod-
ification sites (Dredge et al. 2005; Damianov and Black
2010). Collectively, these results suggest that altering the
function of any single splicing factor may result in the per-
turbation of a network of factors. Understanding the func-
tional relationships in these regulatory cascades will greatly
improve our ability to identify programs of exons controlled
during specific developmental processes.

Exploring connections between splicing factors
and other regulators of gene expression

In addition to the complex functional relationships be-
tween splicing regulators, extensive connections between
AS and other gene regulatory processes have been identi-
fied. For instance, splicing and other RNA processing
events occur while RNA polymerase II (Pol II) actively
transcribes pre-mRNA (Maniatis and Reed 2002). The
emergence of a cotranscriptional splicing mechanism has
led to the evolution of numerous interactions between the
splicing and transcriptional machineries, mediated largely
through the carboxy-terminal domain (CTD) of the largest
subunit of Pol II (de Almeida and Carmo-Fonseca 2008;
Pandit et al. 2008). The CTD of Pol II consists of repeats of
the heptapeptide sequence YSPTSPS, which can be post-
translationally modified in a dynamic manner during
transcription (Egloff and Murphy 2008). Recent genome-
wide analyses in yeast have demonstrated that certain CTD
modifications can be regulated in a gene-specific manner
during transcription (Kim et al. 2010; Tietjen et al. 2010). It
will be interesting to determine if similar principles also
extend to tissue-specific modifications of the CTD during
transcription in metazoans and whether such modifications
could lead to differential recruitment of AS regulators at
specific splice sites.

The CTD and other factors can also influence the elon-
gation rate of Pol II, which, in turn, can impact the time
nascent splice sites are exposed to the splicing machinery,
with the potential to influence AS (Munoz et al. 2010).
Alternatively, an altered rate of Pol II elongation could also
affect the association of splicing regulators with Pol II
during cotranscriptional splicing (Munoz et al. 2010).
Recent global analyses have demonstrated that changing
the elongation rate of Pol II can influence AS of transcripts
encoding genes involved in apoptosis and RNA metabolism
(Munoz et al. 2009; Ip et al. 2011). However, it is currently
not known whether Pol II elongation rates can be influ-

enced differentially across tissues and whether any such
differences can lead to tissue-specific AS regulation. Future
studies will hopefully shed light on these interesting
possibilities.

Numerous links between chromatin regulation and splic-
ing have also emerged over recent years. For instance, a
number of chromatin-remodeling factors have been found
to interact with components of the spliceosome and other
regulators of splicing (Allemand et al. 2008). In one
interesting study, it was demonstrated that the SWI/SNF
catalytic subunit Brm facilitates the accumulation of Pol II
with modified CTD phosphorylation patterns over a regulated
alternative exon in CD44 transcripts (Batsche et al. 2006).
Brm also associates with components of the spliceosome and
Sam68, supporting its role in integrating signals from
chromatin, the transcriptional machinery, and the splice-
osome. A series of recent studies has demonstrated that
specific histone modifications in nucleosomes are prefer-
entially enriched or depleted in exon and intron sequences
(Kolasinska-Zwierz et al. 2009; Schwartz et al. 2009; Spies
et al. 2009; Tilgner et al. 2009; Huff et al. 2010). These
results suggest that particular histone marks could be
instructive or permissive in directing splicing decisions,
and raise interesting mechanistic questions. For instance,
can different histone modifications in the vicinity of exons
recruit splicing factors, or are they generated as a result of
splicing? Are histone marks associated with cell- and
tissue-specific alternative exons different between tissues?
A recent paper has suggested that, for at least some regulated
AS events, histone modifications can display biased patterns
of enrichment over exons in different cell types, and the
factors interacting with these marks can potentially serve to
recruit splicing regulators (Luco et al. 2010). A better
understanding of how these signals are interpreted by
chromatin regulators and the spliceosome in order to gen-
erate tissue-specific AS patterns will be an important goal.

In addition to the direct links between AS and other gene
regulatory processes described above, there is also signifi-
cant indirect cross-regulation. The coupling of alternative
splicing with the NMD pathway serves both as a mechanism
for quality control and in the regulation of transcript levels
as described above (Lareau et al. 2007a). Many transcrip-
tion factors are alternatively spliced (Taneri et al. 2004),
and knockdown of splicing regulators leads to altered AS of
transcription factor isoforms (Boutz et al. 2007b; Calarco
et al. 2009). Additionally, miRNAs target splicing factors
and, by altering their expression levels, indirectly modulate
developmental AS programs (Boutz et al. 2007a; Makeyev
et al. 2007; Kalsotra et al. 2010). Most studies of gene
regulatory networks have thus far focused only on in-
dividual processes. The extent of cross-talk between trans-
acting proteins at various stages of gene regulation suggests
that analyses of the effects of splicing regulators should be
extended to other modes of regulation. Furthermore, a de-
tailed understanding of the interplay between transcription
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factors, splicing factors, miRNAs, and other pleiotropic
regulators in a given developmental paradigm will help
identify functional relationships among groups of genes
targeted by these factors (Fig. 2B).

The generation of predictive models governing
tissue-specific splicing

From a theoretical perspective, as all of the above-men-
tioned analyses are being performed, their cumulative in-
tegration provides resources to generate predictive models
of tissue-specific splicing regulation. Recent work from the
Frey and Blencowe groups demonstrated that machine
learning approaches can be used to infer combinations of
features, such as cis-regulatory sequences, exon/intron
lengths, splice site strengths, and others, that are maximally
predictive of tissue-specific AS patterns (Barash et al. 2010).
The utility of this inferred tissue-dependent ‘‘splicing code’’
was demonstrated through its ability to identify associa-
tions between sets of features, provide testable hypotheses
on critical sequence elements involved in regulating AS
patterns, and uncover novel tissue-specific AS events from
an analysis of pre-mRNA sequence alone (Barash et al.
2010). Recently, Zhang et al. (2010) combined several
genome-wide data sets studying Nova-regulated alternative
exons to establish parameters that could predict Nova-
dependent AS events through a machine learning approach.
This approach was able to identify many more transcripts
regulated by the Nova proteins than could be identified by
each experimental data set in isolation, predict combina-
torial regulation with the Fox splicing factors, and infer
novel principles by which these regulators function.

These studies would not be possible without the gener-
ation of empirically derived genome-wide data sets, from
which the algorithms are usually trained, and decades of
intensive research from the splicing community, from
which parameters have been derived. As more detailed AS
profiling data become available, new trans-acting factors
and cis-regulatory elements are uncovered, and other fea-
tures such as chromatin states are included in new al-
gorithms, the predictive power of computational models
will continue to improve.

CONCLUDING REMARKS

The inception of large-scale approaches to analyze gene
expression has ushered in a new era in which biological
phenomena can be studied both on a gene-by-gene basis
and from a global perspective. A principle that has emerged
from genome-wide transcriptome analyses is that master
regulators have evolved to control networks of transcripts
involved in common developmental and functional path-
ways. Neural splicing regulatory networks also appear to
have evolved under similar organizing principles. Investi-
gations of these networks have served two key purposes.

First, they have enabled new insights into the mechanisms
by which splicing factors regulate AS. Second, they have
identified novel functional associations between gene prod-
ucts that would otherwise not have been illuminated by
studies of transcription factor or miRNA regulatory net-
works. As we move forward, work in the future will be
directed at understanding exactly how individual isoforms
in splicing regulatory networks work together to achieve
biological outputs.

Finally, although this review has focused on splicing
factors in the nervous system, similar attributes have been
identified in other tissues and cellular pathways (e.g.,
Warzecha et al. 2009, 2010; Moore et al. 2010). Analyses
of splicing factor regulatory networks in many distinct
tissue types will undoubtedly reveal novel insights in di-
verse molecular pathways. Collectively, these studies will
lead to a comprehensive picture into how cellular com-
plexity is achieved through the interplay of multiple modes
of gene regulation, and how the perturbation of these
processes lead to various diseases.
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