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Animals move in a wide variety of ways; the complex posture 
dynamics generating these behaviours span multiple spatio-
temporal scales, and exhibit both regularity and variability1. 

At large scales, behaviour is structured, organized into stereotyped 
motifs such as walking or running, but the dynamics within each 
motif can be highly irregular2. This complexity is apparent in 
spontaneous behaviours3, but also in highly stereotyped sequences 
such as an ‘escape response’, which must also be unpredictable 
for successful avoidance of predators4. Despite the importance of 
behaviour in fields ranging from neuroscience5, ethology1, control 
theory6, robotics and artificial intelligence7 to the physics of living 
systems8, the complexity of movement presents unique challenges 
in quantification, analysis and understanding.

Technological advances, including recent progress in machine 
vision9–11, now make it possible to gather high-resolution movement 
data, even in complex, naturalistic settings and for animals with intri-
cate body plans12,13. But how do we map high-resolution recordings 
of animal behaviour into a compressed set of interpretable numbers 
while retaining maximal information about the dynamics? Indeed, 
among biological signals, behaviour exhibits a remarkable divergence 
of descriptions, from representations based on pixels and wavelets14 
to postures15,16 to more abstract states17. Certainly, a good representa-
tion should capture the difference between distinct movement pat-
terns. An ideal representation will also allow near-future predictions 
and be interpretable to provide insight into movement control prin-
ciples. Finally, we seek to reveal rather than impose the structure of 
the behavioural signal, letting the representation and analysis guide 
important characteristics such as continuous versus discrete, variable 
versus stereotyped and spontaneous versus controlled.

We detail the construction and application of a behavioural-state 
space inspired by the similar approach of dynamical systems (also 
known as a phase space18,19, not to be confused with ‘state-space 
models’ in statistics20). A point in our generally multidimensional 
behavioural-state space represents the complete, near-instantaneous 
movements of an animal: posture and short-time posture changes. 
As time evolves, the state-space point follows a smooth trajectory, 

thus providing a geometrical encoding of behaviour. Combining 
dynamical systems theory with high-resolution posture time series 
of the nematode Caenorhabditis elegans, we exploit the detailed 
structure of these trajectory encodings to seek a new quantitative 
perspective of ethological analysis.

State-space reconstruction by maximizing predictability
We consider a d-dimensional time series y(t) of duration T col-
lected in a T × d matrix Y, which represents noisy, incomplete 
measurements of an underlying dynamical system (Fig. 1). With a 
state-space reconstruction, we seek a coordinate transformation Ψ 
that maps Y into a space X that is topologically equivalent21 to the 
state space of the underlying dynamical system, a process known 
as time-series embedding22,23. Dynamical embeddings have been 
used to model complex phenomena such as ecological and neural 
dynamics24,25, and to characterize the stability and symmetry of 
their reconstructed attractors26. Although early approaches primar-
ily used single-variable measurements, multivariate embeddings 
provide better reconstructions27 and can improve prediction28. Our 
principal example is where Y consists of eigenworm posture mea-
surements (d = 5) of freely moving worms. The embedding then 
defines a coordinate system that captures essential information 
about the underlying neuromuscular dynamics.

In our approach, we first lift the d-dimensional measurements 
into a Kd-dimensional space of K contiguous delays and then proj-
ect to a smaller m-dimensional subspace. Formally we decom-
pose the embedding Ψ = Pm∘ΦK into a delay map ΦK, in which we 
iteratively stack (K − 1) delayed copies of Y into a (T − K + 1) × Kd 
matrix YK

I
, followed by a dimensionality reduction transformation 

Pm, which projects YK
I

 onto an m < Kd-dimensional space. Pm can 
in principle be any transformation and examples include numerical 
derivatives29, delay coordinates30 and random projections25. Here, 
we use singular value decomposition (SVD)23,27 followed by inde-
pendent component analysis (ICA)31, which results in a state space 
with independent components spanning the dimensions of the first 
m singular vectors. In matrix notation Xm ¼ YKΓm

I
, where Γm is the 
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Kd × m matrix of basis vectors spanning the m-dimensional state 
space, while Xm contains the state-space trajectories. This space of 
transformations allows for both derivative and more general linear 
filters32 and the resulting coordinates reflect the most dominant lin-
ear modes of the dynamics23,32.

The reconstruction is parameterized by the window length K and 
the state-space dimension m, and we describe a new, principled pro-
cedure for determining (K, m) on the basis of optimal prediction. 
Notably, embedding parameters have often been chosen heuristi-
cally23,32. To predict future observations we use Nb nearest neigh-
bours in the reconstructed state space (Fig. 2a left). To compute 
yest(t + τ), the τ-step prediction of y(t), we average the future of the 
nearest neighbours of the corresponding state-space point so that 
xestðt þ τÞ ¼ hxðtþ τÞiNb

I
 and then apply ΦK

−1 to pull xest back to 
observation space. This is known as the nearest-neighbour predictor 
and also as Lorenz’s ‘method of analogues’33. The nearest-neighbour 
predictor provides a lower bound to the predictability of a state-space 
reconstruction, as it is equivalent to a zeroth-order Taylor approxi-
mation of the dynamics in a local neighbourhood.

We quantify the prediction quality after τ steps using the error

EðτÞ ¼
Xd

j¼1
h yj t

0 þ τð Þ � ðyestÞj t0 þ τð Þ
 2

i
1=2

t0
ð1Þ

as shown in Fig. 2a(middle). Although E(τ) is a function, we seek 
a single scalar that captures overall predictability. For a completely 
predictable system E(τ) is constant with a value corresponding 
to the noise level in the observations. On the other hand, for sys-
tems where predictions worsen over time, E(τ) grows according 
to a non-trivial process, possibly involving multiple timescales33,34, 
shown schematically in Fig. 2a(right).

As long as the system is stationary, the error is bounded and E(τ) 
does not grow indefinitely, but saturates to a value es as τ → ∞, at 
which time the predictions are as good as choosing randomly from 
the sampled state space. We use the cumulative difference between 
the early-time and asymptotic errors to define Tpred as a new measure 
of predictability,

Tpred ¼
1
es

Z 1

0
ðes � EðτÞÞ dτ ¼ Δ

es
ð2Þ

where Δ is the area between the curve E(τ) and the asymptote es.  
A state-space reconstruction with a large Tpred is good in the sense 
that it allows us to predict future observations for as long as pos-
sible. Although several previous reconstruction studies are based on 
prediction as a guiding principle, they have used the predictive error 
in a more ad hoc manner, either by setting τ to a specific value22,24, or 
by integrating E(τ) to a chosen time τ0 (ref. 35).

The average prediction error for an arbitrary time τ′ is 
hEðτ0Þi ¼ 1

τ0

R τ0

0 EðτÞ dτ
I

. At large enough τ′, E(τ) approaches es and  

we can write 〈E(τ′)〉 = es − Δ/τ′. Thus, the average prediction error is  
reduced from its asymptotic limit by an amount given by Δ/τ′. In a 
densely sampled state space Tpred is also the characteristic timescale 
for the total s.d. of a ball of points to relax to the total s.d. of the 
state-space distribution.

We demonstrate our embedding approach on a noisy measure-
ment of a single coordinate of the Lorenz system (State-space recon-
struction for the Lorenz system simulation) and display the results 
in Fig. 2b–e. We find that Tpred increases with K for K < 25 frames, 
after which it decreases gradually, and we choose K ¼ 25

I
. We proj-

ect YK�

I
 on the first m singular vectors and find that Tpred decreases 

after m ¼ 3
I

.

The low-dimensional state space of C. elegans locomotion
We leverage our state-space reconstruction to elucidate the behav-
iour of the nematode C. elegans freely foraging on a flat agar 
plate36,37. In two dimensions, worms move by making dorsoven-
tral sinusoidal bends along their bodies38, which can be captured 
through high-resolution tracking microscopy to give a multidimen-
sional time series of posture changes. Despite the variety of visible 
postures, most of the shape variation is captured by a linear com-
bination of a small number of primitive shape dimensions (eigen-
worms)15,37 (Fig. 3a).

Projections along the eigenworm dimensions describe the 
worm’s instantaneous shape and are not a direct indication of 
behaviour, which arises from posture changes. Dynamical represen-
tations based on derivatives15,36,39, and on sequences of postures40,41, 
have been used to quantitatively explore the worm’s behaviour. 
Importantly, the low dimensionality of the worm’s shape space does 
not imply simplicity and low dimensionality of the behavioural 
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Fig. 1 | State-space reconstruction. From upper left: a d-dimensional time series of an underlying dynamical system is collected in the measurement 
matrix Y. ΦK stacks delayed copies of the measurements within a short time window into a matrix Y. Dimensionality reduction of Y results in an 
m-dimensional state space spanned by the basis vectors called the modes. The mode coefficients form an approximation of the state space of the 
underlying dynamics. Each value of K and m results in a different state-space reconstruction of the underlying dynamics and we seek embedding 
parameters that maximize predictability.
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dynamics, and there are several signs of complexity in C. elegans 
behaviour, such as heavy-tailed distributions40, hierarchical struc-
ture in posture sequences41 and indications of dynamical criticality 
in local linear approximation of the dynamics39, as well as simultane-
ous presence of stereotypy and variability in posture sequences15,36,40.

To reconstruct the state space of the worm’s posture dynam-
ics, we start with a T × 5 measurement matrix Y consisting of five 
eigenworm coefficients for a recording with T = 33,600 frames 
(sampled at 16 Hz) (Fig. 3a). We stack K − 1 time-shifted copies of Y 
to give the (T − K + 1) × 5K state matrix YK

I
. To estimate the optimal 

window size, we compute Tpred for each choice of K, as shown in  
Fig. 3b for a single representative worm, and choose K ¼ 12

I
. 

Within this window, we find that predictability saturates with m = 7 
singular vectors (Fig. 3c). Analysis of each worm in the forag-
ing dataset reveals a similar simplicity (Extended Data Fig. 1a,b). 
Despite its observed complexity, worm behaviour is characterized 
by a low-dimensional state space.

We increase the interpretability of the worm’s state-space recon-
struction through a final transformation to independent com-
ponents. We use FastICA31 on the m = 7 projections of the delay 
matrix YK�

I
 to obtain independent coordinate directions and we 

denote these coordinates ‘behavioural modes’, Γ. We show the seven 
behavioural modes in Fig. 3d as curvature kymographs and note 
that they fall into three groups, broadly corresponding to the three 
coarse categories of worm movement: forward, backward and turn-
ing locomotion. Specifically, Γf1 and Γf2 modes correspond to the 
ventrally and dorsally initiated anterior–posterior body waves that 
worms make during forward locomotion. The reversal modes Γr1 
and Γr2 capture the posterior–anterior body waves worms make 
during backward locomotion. Analogous to sine and cosine pairs 

of a pure harmonic oscillator, these modes form near-quadrature 
pairs of oscillations during forward and backward locomotion. 
Finally, {Γt1, Γt2, Γt3} correspond to longer-ranged body bends. Large 
projections along Γt1 and Γt2 correspond to bends directed towards 
the ventral or dorsal direction respectively during a delta-turn-like 
bend37, while Γt3 corresponds to an omega-turn-like bend. In this 
representation, worm locomotion is approximated by linearly com-
bining these modes with time-varying amplitudes. We find similar 
modes for different choices of m�

I
 (Extended Data Fig. 2) and also 

for an ensemble embedding constructed by concatenating all N = 12 
foraging organisms (Extended Data Figs. 3 and 4). The behavioural 
modes emerge in an unsupervised manner, with no previous infor-
mation on the worm’s movement.

The topology and geometry of trajectories in the behavioural-state 
space contain important qualitative and quantitative information 
about worm behaviour. A 10-min trajectory is visualized in Fig. 3e 
as projections onto the three mode combinations described above. 
In the (Xf1, Xf2) and (Xr1, Xr2) planes, trajectories are coloured by the 
centroid velocity of the worm, negative for backward locomotion 
and positive for forward locomotion. Trajectories in the (Xt1, Xt2, Xt3) 
space are coloured by the mean body curvature. Large excitations 
in each of the three projections correspond to forward, backward 
and turning locomotion respectively. Specifically, trajectories in 
the (Xf1, Xf2) plane form a prominent circular band indicating 
nearly constant-amplitude body waves during forward locomo-
tion. Reversals emerge as trajectories spiralling from the centre 
to a maximum radius in the (Xr1, Xr2) plane, and then spiralling 
in as a reversal ends. Finally, deep body bends are represented as 
large transient orbits, with ventral turns and dorsal turns on oppo-
site sides. Wild-type worms have a ventral bias in their deep body 
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I
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bends, which is visible in the state space as a greater density of orbits 
on one side of the three-dimensional projection.

The state space also captures relationships between different 
body wave patterns. For example, we find that most reversals tran-
sition to forward by way of a deep ventral bend (Extended Data 
Fig. 1d), an observation that was previously reported in the con-
text of the escape response and pirouette reorientation sequence42,43. 
To quantify the relative activity of each set of body waves and the 
phase relationships between them, we define normalized mode 
amplitudes, Ai ¼ XiXi

XX
I

, where i ∈ {f, r, t}. The Ai range from 0 to 1 
and measure the relative activity of different body wave patterns. We 
use these amplitudes to examine the behaviour of N = 92 on-food 
worms where a brief laser impulse is applied to the head, result-
ing in a localized thermal stimulus provoking an escape response37, 
shown schematically in Fig. 3f. We project the posture dynamics of 
each stimulated worm onto the ensemble modes (Extended Data  
Fig. 3) and show the normalized mode amplitudes averaged across 
all worms (Fig. 3g). The amplitudes capture the timescales and phase 
relationships between different body wave patterns during an escape 
sequence. In particular, the turning modes are strongly suppressed 
after the initiation of the reversal, increasing gradually as the reversal 
ends and worms transition into a turn. The turning amplitude then 
decreases, while forward amplitude increases as worms resume for-
ward movement in the approximately opposite direction.

We extend our analysis to include on-food behaviour of wild-type 
worms as well as the mutant strain npr-1 (Extended Data Fig. 5). 
The movement of wild-type worms on a bacterial lawn is more 
complex than that seen off food, exhibiting more irregular body 
motions and including switches between a ‘roaming’ state, where 
worms explore the food patch by making long forward runs, and a 
‘dwelling’ state, where worms exploit a local food patch by limiting 
their centroid displacement through increased reversals and turn-
ing17,44 (see also Extended Data Fig. 10a). The neuropeptide recep-
tor NPR-1 is known to affect these foraging behaviours, with npr-1 
mutant worms exhibiting an increased frequency of roaming45. We 
find that the dominant on-food modes of roaming wild-type and 
mutant npr-1 worms are remarkably similar, both to each other 
and to the primary off-food modes. The similarity of these embed-
dings in distinct contexts and imaging environments illustrates the 
robustness of our technique and also offers new, posture-scale evi-
dence that the NPR-1 mutation overrides the switch to dwelling.

Unstable periodic orbits and deterministic behavioural 
variability
The state space of worm locomotion is organized such that neigh-
bouring points correspond to similar behavioural sequences of 
length K. However, these neighbouring sequences diverge with 
time, resulting in unpredictability, as in the example of Fig. 4a. In 
particular, the average distance between neighbouring trajectories 
exhibits a regime of exponential growth (Extended Data Fig. 6a), 
hinting at a connection to deterministic chaotic dynamics. Chaotic 
dynamics are also fundamentally tied to collections of unstable 
periodic orbits (UPOs)46, and we note the strong cyclic appearance 
of trajectories within the projections (Fig. 3e). A number of biologi-
cal systems have been investigated using periodic orbits, including 
neuronal activities47,48, human electroencephalograms47, crayfish 
photoreceptors49 and cardiac arrhythmias50.

We search for periodic orbits by identifying the first recurrence 
times in a neighbourhood51. Given a point x(i) in state space, we 
find the smallest k > i such that x(k) is a transverse neighbour of 
x(i). The sequence [x(i), x(i + 1), …, x(k)] is then detected as a peri-
odic orbit of period p = k − i (Periodic orbits). The stability of these 
periodic orbits is given by their maximal Floquet exponents, which 
we estimate by computing the maximal expansion rate of a ball 
of points along the orbit (Floquet exponents). For the Lorenz sys-
tem, we show that the orbits detected as above agree with the true 

periodic orbits taken from high-precision numerical calculations52 
(Extended Data Fig. 7a–e). The maximal Floquet exponents are also 
recovered correctly (Extended Data Fig. 7f).

When applied to the state space of foraging worms, we find that 
the distribution of the number of periodic orbits exhibits peaks at 
approximately integer multiples of a minimum period pmin corre-
sponding to the frequency of each worm’s body wave during for-
ward locomotion (Fig. 4b inset). We quantify the stability of each 
periodic trajectory by computing its maximal Floquet exponent. 
The distribution of Floquet exponents is largely positive, indicating 
that the worm’s periodic orbits are mostly unstable (Fig. 4b). The 
UPOs of worm behaviour provide a longer-timescale description of 
the movement and also a quantitative characterization of the tra-
jectory divergence in Fig. 4a. We estimate the maximal Lyapunov 
exponent λmax by an average of the Floquet exponents of periodic 
orbits of increasing length, weighted by e�μ1p

I
, where μ1 is the maxi-

mal Floquet exponent of the orbit, and p is its period53. Including 
orbits of duration up to p = 8 (Fig. 4c (blue)) provides an approxi-
mation of λmax, which agrees with direct trajectory divergence esti-
mates averaged across all worms (grey bar, see also Extended Data 
Fig. 6a and λmax). The average across random segments of the same 
length converges more slowly (Fig. 4c (red)).

The detected periodic orbits are interpretable in terms of com-
monly observed C. elegans behaviours. Orbits with pmin correspond 
to forward and backward crawling including orbits with a dorsal 
or ventral bias (Extended Data Fig. 8b,c). More surprisingly, longer 
periodic orbits are composites, corresponding to longer-time reori-
entation behaviours of the worm’s navigation such as pirouettes 
and escape strategies42,43,54. In Fig. 4d (blue) we show state-space 
trajectories of one such period-4 orbit. This orbit is composed of 
a reversal followed by a deep body bend, and subsequent forward 
movement: a posture sequence previously reported in pirouette 
reorientation and escape behaviours42,43. Though this periodic orbit 
is several body waves long, it is repeated almost exactly at different 
times during the recording. We show one such recurrence Fig. 4d 
(orange), along with the corresponding posture sequences. As in the 
Lorenz system, the presence of UPOs suggests an intriguing view of 
the worm’s foraging dynamics where the state wanders aperiodically 
in a complex landscape composed of unstable orbits.

Symmetric Lyapunov spectrum and damped–driven 
Hamiltonian dynamics
While the behaviour of C. elegans is simpler than that of most ani-
mals, the quantitative dynamics of worm posture defy a straightfor-
ward interpretation, or even as yet a model (see for example ref. 55 
for a review). There is rough stereotypy in the orbits correspond-
ing to each behaviour, but also large cycle-to-cycle variation. Such 
variability is linked to a positive maximal Lyapunov exponent and 
UPOs (Fig. 4b,c and Extended Data Fig. 6a), so that even within 
a ‘single’ behaviour such as forward crawling each cycle is deter-
ministically different. To more fully illuminate this variability, we 
examine the dynamics along all dimensions within the state space.

In an m-dimensional state space, local neighbourhoods are 
sheared by the flow and are simultaneously stretched and squeezed 
along different directions, dynamics that are invariantly char-
acterized by the Lyapunov exponents, λi = 1, …, m. Such stretching 
and squeezing is described by the Jacobian Jx(t), which maps an 
m-dimensional spherical neighbourhood to an m-dimensional 
ellipsoid. The spectrum of Lyapunov exponents is given by the 
infinite-time average of the logarithms of the principal axes of the 
ellipsoid (Fig. 5a). Positive Lyapunov exponents reflect directions 
along which trajectory bundles expand, while negative exponents 
reflect shrinking directions.

The Lyapunov exponents reveal important information about 
the dynamics of a system56. The sum of the exponents is the aver-
age dissipation rate: zero for conservative systems and negative for 
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those with dissipation. The sum of the positive exponents bounds 
the metric or Kolmogorov–Sinai entropy rate57, providing a prin-
cipled measure of the unpredictability. In addition, the spectrum of 
Lyapunov exponents can reveal underlying symmetries and conser-
vation laws. For example, continuous dynamical systems exhibit at 
least one zero exponent corresponding to time-translation invari-
ance along the direction of the flow.

We compute the Lyapunov spectrum for the state space of 
C. elegans (Lyapunov spectrum and Jacobian estimation), and 
show bootstrapped density estimates of the m = 7 exponents 
across different worms (Fig. 5b). We find two positive expo-
nents, λ1 = 0.66 (0.62, 0.69) s−1, λ2 = 0.29 (0.26, 0.32) s−1, and a third, 
near-zero exponent, λ3 = 0.056 (−0.02, 0.11) s−1. The Kolmogorov–
Sinai entropy rate is thus bounded by the sum of positive  
exponents as hKS ≤ 1 (0.93, 1.09) nats s−1 (note that we have restored 
the units of nats for ease of comparison with other entropy  

measures). The sum of all of the Lyapunov exponents is negative, 
indicating that the system is dissipative with a dissipation rate of 
∑iλi = −0.94 (−1.15, −0.78) s−1. Although trajectory bundles expand 
locally, dissipation causes them to contract as a whole and relax to 
an attracting manifold. We estimate the dimension of the attrac-
tor as the Kaplan–Yorke dimension DKY = 5.93 (5.75, 6.08) (ref. 58). 
The combination of local expansion generating variability and local  
contraction generating stereotypy is an essential aspect of the com-
plexity of the worm’s posture dynamics.

The Lyapunov spectrum also exhibits a striking symmetry; 
exponents come in conjugate pairs that sum to the same number 
α = −0.27 (−0.3, −0.24) s−1 (Fig. 5b inset). The entire spectrum is 
thus symmetric about α2 (dotted line). The symmetry is also present in 
six- and eight-dimensional embeddings (Extended Data Fig. 6b–d).  
Symmetric Lyapunov spectra have been previously observed in 
the following damped–driven Hamiltonian systems: a sinusoidally 
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driven pendulum with a damping coefficient α (ref. 59), coupled 
Duffing oscillators with viscous damping of α per degree of freedom 
and a periodic drive60 and thermostatted molecular dynamic simu-
lations where α is a feedback friction force per degree of freedom 
that acts to maintain a dynamic equilibrium by either keeping the 
kinetic or total energy of the particles constant61. In contrast, chaotic 
systems that are not derived from a Hamiltonian, such as the Lorenz 
and Rössler systems, do not possess a symmetric Lyapunov spec-
trum. Interestingly, in a biomechanical model of larval Drosophila 
locomotion, damped–driven Hamiltonian chaotic dynamics were 
sufficient to generate realistic forward and backward crawling, as 
well as more complex reorientation behaviours62.

Discussion
We use sequences of multidimensional data to reconstruct a maxi-
mally predictive state space (Figs. 1 and 2). Our reconstruction is 
made possible by a new measure of predictability, Tpred, which quan-
tifies the timescale at which predictions of the future randomize 
according to the state-space density. Conceptually, our approach 
is a timescale separation; short-time sequences define the recon-
structed state variables while longer-time dynamics are encoded 
as state-space trajectories. Our reconstruction explicitly seeks the 
full state information available in short-time dynamics, analogous 
to discovering the additional variable of velocity from the displace-
ment time series of a simple oscillator. Such information is often 
added implicitly, for example through the choice of derivative fil-
ters in neural imaging63,64. Both the resulting state variables and 
the geometry and topology of their trajectories offer important, 
coordinate-invariant understanding of the processes generating the 
dynamics.

In the posture time series of the roundworm C. elegans we 
found that the state space for off-food foraging is dominated by 
a seven-dimensional basis of interpretable modes Γ (Fig. 3) and 
their coefficients X, which are qualitatively similar for different 
worms under the same conditions. These dominant modes also 
appear in on-food foraging of wild-type and npr-1 mutant worms. 
In the ensemble embeddings of off-food worms and the combined 
embedding of on-food roaming and dwelling worms, we see a simi-
lar behaviour in Tpred; most predictive ability is captured within the 
seven-dimensional space, but there are about six additional modes 
with small but notable increase in Tpred. Both dwelling behaviour (on 
food) or area-restricted search (off food) offer promising condi-
tions in which to explore the meaning of these additional modes. 

Higher-dimensional embeddings or different behavioural modes 
may also appear in settings we have not analysed.

The behavioural modes could be broadly categorized into groups 
corresponding to forward, backward and turning locomotion, as 
well as head dynamics, which was only seen on food. Biologically, 
these can be linked to known classes of motor neurons: A and B 
ventral cord motor neurons, which drive backward and forward 
locomotion respectively, sublateral motor neurons such as SMB 
and SMD, which control deep body bends, and head motor neu-
rons driving the head muscles65. Interestingly, excitatory classes of 
ventral cord motor neurons were recently reported to be capable of 
spontaneous rhythm generation and proposed to be central pattern 
generators for forward and backward locomotion66,67. Although we 
focused on characterizing the seven-dimensional embedding, sim-
ilar results are also found in six and eight dimensions (Extended 
Data Figs. 2–4).

In our embeddings, the state-space trajectories retained large 
variability, occupying much of the volume in the reconstructed 
space. A measure of this volume is the Kaplan–Yorke dimension, 
and we find DKY ~ 6, not substantially smaller than the embed-
ding dimension. One hypothesis for this variability is that worm 
behaviour is stochastic and results from noise-induced transitions 
between a finite number of elements such as stable limit cycles rep-
resenting individual stereotyped motifs36,68. However, the exponen-
tial divergence of nearby state-space trajectories (Extended Data 
Fig. 6a) and the consistency of this divergence with the spectrum 
of UPOs (Fig. 4), as well as the symmetric Lyapunov spectrum 
(Fig. 5), provide evidence for important, deterministic variation 
and cannot be easily explained by a completely stochastic model. 
From the perspective of deterministic chaos, behavioural dynam-
ics are an aperiodic wandering among an infinite number of UPOs, 
allowing an animal to generate an infinite number of behavioural 
sequences. Indeed, this agrees with the finding that the number of 
novel sequences in C. elegans behaviour grows with the observa-
tion time40. On the other hand, stereotyped trajectories can emerge 
naturally as orbits with low values of the maximal Floquet expo-
nent. Such trajectories can also be generated by stabilizing periodic 
orbits with control, for example a simple linear controller of the 
form K[g(t) − x(t)], where g(t) are the desired goal dynamics, x(t) 
is the current state and K is a control gain matrix69. This determin-
istic picture could lead to important insights into the mechanisms 
underlying short-time control of behaviour by providing a better 
interpretation of continuous-time neural recordings or through the 
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development of precise state-dependent perturbations in the neigh-
bourhood of different unstable periodic orbits.

The symmetric form of the Lyapunov spectrum suggests that the 
worm’s behavioural dynamics can be interpreted as normal modes 
of a system of coupled, damped and driven, Hamiltonian oscillators,

_Qi ¼ ∂H
∂Pi

_Pi ¼ � ∂H
∂Qi

þ CðQi;Pi;ψðtÞÞ
ð3Þ

where (Qi, Pi) are the generalized position and momentum coordi-
nates for the ith normal mode. The Hamiltonian is a scalar func-
tion governing the time-independent dynamics resulting from the 
mechanics of the worm’s elastic body; for example, most biome-
chanical models implement the worm’s body mechanics through 
elastic elements or mechanical linkages, the dynamics of which 
can be encoded in a Hamiltonian. The term C(Qi, Pi, ψ(t)] encap-
sulates the time-dependent neuromuscular control forces due to 
interaction of the worm’s body with the environment, propriocep-
tive feedback and neural processing of various sensory stimuli 
ψ(t). Interestingly, multiple efforts have reported that various bio-
mechanical measures remain roughly constant across a range of 
external loads during C. elegans locomotion, such as the normal-
ized wavelength of the body wave, angle of attack, bending power, 
and phase relationship between the muscle activity and body 
curvature70–72. Following the example of thermostatted dynam-
ics (designed to capture constant-temperature dynamics61), such 
emergent constants could be explained through feedback control 
arising from proprioceptive feedback, which is thought to underlie 
gait modulation in C. elegans73,74. Our work also allows for con-
nections between non-equilibrium thermodynamics and worm 
behaviour. For example, worm dynamics breaks the Hamiltonian 
time-reversible symmetry in a continuous fashion via the dis-
sipation rate α, which sets the characteristic timescale at which 
dynamics can be considered time-reversible symmetric. In addi-
tion, the sum of Lyapunov exponents is an estimate of the entropy 
production rate75.

The dynamical invariants such as Lyapunov exponents, dimen-
sions and entropies made accessible by our embedding approach 
provide important constraints and new understanding for 
short-time behaviour consisting of neuromuscular control along 
with the biomechanics of the body and its environmental interac-
tion. However, longer timescales are also present in the short peri-
odic orbits, which are interpretable in terms of behavioural motifs 
such as forward/backward locomotion, and also longer-time reori-
entation sequences such as pirouettes. Longer timescales can also be 
addressed through a systematic coarse-graining of the continuous 
state-space dynamics, which results in a transfer operator76. In this 
approach the partition itself subsumes much of the nonlinearity so 
the eigenvalues of the transfer operator can provide a systematic and 
useful timescale separation. In contrast, linear measures such as the 
power spectrum are often not informative on the original dynamics 
of complex systems.

While we expect a dynamical systems perspective to be generally 
useful in understanding natural behaviour, the analysis here bene-
fits from the relative simplicity of the worm’s foraging dynamics and 
the resulting interpretability of the modes. Though other settings 
and organisms may generate more complex embeddings, important 
dynamical information such as trajectory stability and dynamical 
invariants can still be extracted from the state-space reconstruction. 
Embedding ideas have also been recently used to understand the 
global brain dynamics of C. elegans77 and to identify metastable sets 
and slow order parameters from molecular dynamics simulations 
using Markov operators78. Our reconstruction framework, includ-
ing Tpred and its estimation, is also applicable to stochastic dynamical 
systems (work in progress).

Across wide areas of science there has been a remarkable increase 
in the availability of precise, multidimensional and dynamical data, 
and new analysis ideas are emerging39,79. Here, we improve on the 
previous work on state-space reconstruction30 (see also the section 
‘Worm state-space reconstruction’), where much was in the context 
of either univariate measurements or known dynamical systems and 
included a heuristic search of reconstruction parameters. However, 
challenges associated with high dimensionality, data sampling and 
non-stationarity remain. For example, the one-step error for N 
samples from a D-dimensional dynamical system is E(1)/es ≈ N−1/D 
(ref. 80)—higher-dimensional systems require exponentially more 
data to keep E(1)/es ≪ 1. A related difficulty is the Euclidean metric 
used to find nearest-neighbour distances, which is invalid even in 
lower-dimensional spaces with large curvature fluctuations. In this 
setting, it might be possible to use metric-learning algorithms81 to 
recover a suitable metric from data. Finally, recent progress in lever-
aging artificial neural networks to recover dynamical invariants82 
offers promising directions for combining a principled dynamical 
perspective with high-dimensional, real-world systems.
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Methods
Software. Code for all analysis reported here was written in MATLAB83 and is 
publicly available: https://bitbucket.org/tosifahamed/behavioral-state-space.

Experimental details. The foraging and escape-response datasets were previously 
analysed using classical image analysis techniques36,37. Data for N2 worms on food 
and npr-1 mutants were collected from an open-access dataset84, and analysed 
to solve for coiled postures with custom-made machine vision algorithms 
(manuscript in preparation). Mode time series for on-food data are available in the 
bitbucket above.

Off-food N2 dataset. N = 12 L4-stage N2 worms were recorded at 32 Hz 
with high-resolution tracking microscopy. For the analysis here the data were 
downsampled to 16 Hz. Worms were cultivated under standard conditions at 20 °C 
(ref. 85). Before the assay, worms were cleaned of E.coli bacteria by a 1-min immersion 
in NGM (nematode growth medium) buffer. Worms were then placed on a 9.1-cm 
assay plate (Petri dish) with a 5-cm-radius copper ring pressed into the agar surface 
for confinement. The assay started 5 min after the transfer and lasted 35 min.

Escape-response N2 dataset. N = 92 mid- to late-L4-stage N2 worms were 
targeted on the head with a 100-ms, 75-mA infrared laser pulse from a diode laser 
(wavelength 1,440 nm), resulting in a localized temperature change of approximately 
0.5 °C. Images were recorded at 20 Hz for 30 s (10 s before stimulation and 20 s after 
stimulation). To prevent adaptation each worm was only assayed once. To match the 
sampling rate of the foraging dataset, the posture time series was interpolated and 
downsampled to 16 Hz using the MATLAB83 resample command.

On-food N2 dataset. N = 50 adult N2 recordings were collected from an 
open-access dataset84. Worms were grown at room temperature ~ 22 °C and 
maintained on standard NGM plates86 with three drops of OP50 bacteria. The 
3.5-cm low-peptone NGM imaging plates were seeded with 20 μl of OP50, in the 
centre of the plate, and allowed to dry: the drop of OP50 is nearly circular and 
~8 mm in diameter. Worms were then transferred to the centre of the plate, one 
worm per plate, and given 30 min of habituation, after which they were tracked 
for 15 min. Worms were imaged on an immobile platform isolated from tracking 
motion87. The sampling rate varies across the open-access dataset, but was 30 Hz 
in our 50-worm population. Our selected population consists of 25 worms with a 
higher fraction of roaming states and 25 worms with a higher fraction of dwelling 
states, classified according to their centroid speed and angular speed averaged in 
10-s windows17 (Extended Data Fig. 10a).

On-food npr-1 mutant dataset. N = 7 adult npr-1 recordings were collected from 
an open-access dataset84. Experimental details and image processing are the same 
as for the N2 data on food, except that the sampling rate was 20 Hz.

Image analysis and posture-space estimation. For the foraging and escape-response 
datasets, the image analysis pipeline follows37. Briefly, we parameterize the shape of a 
worm by tangent angles calculated at 100 points along the body image skeleton. For a 
recording session of T frames, this results in a T × 100 matrix Θ, containing the shape 
information for each uncrossed frame where the worm’s body does not intersect 
itself. Next, a five-dimensional approximation of the 100-dimensional posture space 
is calculated by projecting the elements of Θ onto the basis given by the first five 
singular vectors (eigenworms) of Θ. For frames with a body crossing, an inverse 
tracking algorithm is used to identify the eigenworm projections37. For the data 
collected from ref. 84, we used a custom-made machine-vision algorithm11 to resolve 
blurry frames and coiled postures.

Worm state-space reconstruction. Our reconstruction method improves upon 
previous reconstruction-method work88–93 by proposing a principled scheme for 
selecting reconstruction parameters on the basis of maximizing predictability. 
Given a d-dimensional time series in Y ¼ ½y1:T1 ; ¼ ; y1:Td 

I
, along with an estimate 

of the optimal embedding window K�

I
, and minimum embedding dimension m�

I
, 

the state-space reconstruction proceeds as follows. First, we create the L ´K�d
I

 
matrix YK�

I
 containing delayed copies of the mean subtracted measurements, 

YK ¼ ½y1:L1:d ; y
2:ðLþ1Þ
1:d ; ¼ ; yK:T1:d 

I
, where L ¼ ðT � K þ 1Þ

I
. For the postures of C. 

elegans, the measurements are composed of d = 5 eigenworm coefficients. Next, 
we perform ICA on the space formed by the first m�

I
 singular vectors of YK�

I
 using 

the FastICA algorithm31 to obtain an m�

I
-dimensional state space spanned by the 

independent basis vectors Γ. Projections of YK�

I
 on the state space are contained 

in the L ´m�

I
 state-space matrix X. Each row, x(t), of X is the behavioural state 

encoding the instantaneous behaviour of the worm at time t, while the temporal 
sequence, [x(t), …, x(t + τ)], forms a continuous trajectory in state space that 
encodes the shape change dynamics of a behavioural sequence.

State-space reconstruction for the Lorenz system simulation. We simulated the 
Lorenz system94,

_s1 ¼ 10ðs2 � s1Þ
_s2 ¼ s1ð28� s3Þ � s2
_s3 ¼ s1s2 � 8

3 s3

using MATLAB’s ode45 Runge–Kutta ordinary differential equation solver83 
with a time step dt = 0.01 s and error tolerances of 10−8. We take the variable s1 
as the observation time series y(t). To simulate a noisy observation process we 
add to y(t) a uniform white noise with s.d. of 0.5% the s.d. of s1. The state space is 
reconstructed from the one-dimensional observed time series as described above 
(without the ICA step).

Choosing reconstruction parameters by maximizing predictability. To choose 
the reconstruction parameters (K, m) we first vary K in the range 1 ≤ K ≤ Kmax and 
estimate Tpred in the candidate state space YK

I
 formed by the delayed observations. 

We set K�

I
 as the minimum K where Tpred as a function of K begins to decrease. 

In cases where Tpred saturates but does not decrease, we choose K�

I
 as the K at 

which Tpred saturates. If Kmax appears too short, then it can be increased step-wise 
until Tpred(K) starts decreasing. For the Lorenz system we have Kmax = 100 frames, 
while for the worm data we have Kmax = 30 frames. Intuitively, K�

I
 should allow the 

reconstruction to capture the fastest timescale of the system, which for chaotic 
systems is set by the period of the smallest UPO, pmin. Increasing K�

I
 further filters 

across longer periods, and in the limit K → ∞ the SVD filter becomes a discrete 
Fourier transform95. At the other end, K�

I
 should be large enough to embed the 

dynamics completely. Using the bound given by Takens’s embedding theorem23,30, 
we obtain ð2m þ 1Þ=d≤K<pmin

I
. Once the embedding window is set as K�

I
, we 

perform SVD YK ¼ UΣVT

I
. The first m columns of U contain the normalized 

projections of YK�

I
 onto its first m singular vectors. To find the embedding 

dimension, we vary m and compute Tpred as above. We set the embedding 
dimension m�

I
 as the minimum m where Tpred as a function of m saturates or begins 

to decrease.

Nearest-neighbour prediction. We estimate the τ-step future of an observation 
y(t′), denoted yest(t′ + τ), from an average of the τ-step future of Nb nearest 
neighbours of the corresponding state-space point x(t′). Specifically, we find Nb 
nearest neighbours of x(t′) in state space, denoted by z(t′; r) for the rth nearest 
neighbour of x(t′), and average their values after τ steps, xest(t′ + τ) = 〈z(t′ + τ; r)〉r, 
for all Nb neighbours. Finally, we project xest(t′ + τ) back to the observation space, 
to obtain yest(t′ + τ). In delay space this is done by taking the first d columns of Y, 
while in the SVD space we project back the m-dimensional prediction by UmΣmVm

T, 
where the subscript indicates that that these are m-dimensional truncations of 
the original matrices. To avoid trivially selecting the successive points as nearest 
neighbours, we take only the transverse nearest neighbours of x(t′), which are 
identified by the local minima of Rt′(t) estimated using the findpeaks function 
in MATLAB83, where Rt′(t) is the distance between x(t′) and all other points in state 
space. We quantify the τ-step prediction accuracy by the root mean squared error

EðτÞ ¼
Xd

j¼1
h yj t

0 þ τð Þ � ðyestÞj t0 þ τð Þ
 2

i
1=2

t0

for N = 104 different test points y(t′) in the measurement time series. The 
predictions are made to a maximum prediction time, which is long enough that 
E(τ) saturates to es. Examples of E(τ) in different embedding dimensions are shown 
in Extended Data Fig. 9a,b for both the Lorenz system and an example worm. 
The root mean squared error is also a function of Nb. Making this dependence 
explicit, we write E(τ, Nb) when Nb is considered a variable. We set the number of 
neighbours by minimizing the one-step prediction error E(1, Nb) (see Extended 
Data Fig. 10b for an example).

Calculation of Tpred. We developed a fixed-point algorithm to estimate Tpred. We 
begin with an initial guess of es labelled es

0 and time τs
0 such that E(τ) > es

0 for 
all τ ≥ τs

0. Next, noting that for large times ∫E(τ) dτ = esτ − Δ, we fit a line to to a 
numerical estimate of ∫E(τ) dτ from τs

0 to τmax. The slope of this line provides the 
next estimate of es, labelled es

1, and the intercept is the next estimate of the area Δ, 
labelled Δ1. We use es

1 to again estimate τs
1 and fit a line to ∫E(τ) dτ from τs

1 to τmax, 
repeating the process until the estimates for es

j and Δj converge. Using the final 
estimates of Δ and es we can obtain a robust estimate Tpred ¼ Δ

es
I

. A schematic of 
this iterative process is shown in Extended Data Fig. 9c. In our experience it only 
takes three or four iterations for the estimates to converge. To obtain the error bars 
we bootstrap across the prediction test points, generating 100 bootstrapped E(τ) 
curves along with Tpred estimates for each. These are then used to estimate the 95% 
confidence intervals of Tpred.

Prediction timescale Tpred. In cases where the error growth E(τ) is well approximated 
by a sigmoid (conjectured by Lorenz for chaotic systems with a single Lyapunov 
exponent λ; ref. 33), one can show Tpred ¼ 1

λ log
es
e1

� �

I

, where e1 is the one-time-step 
error E(1). On the basis of information-theoretic considerations, Farmer96 derived 
the upper bound for the predictability timescale as DI

hKS
log es

e1

� �

I

, where DI is the 
information dimension, which is consistent with our calculation for the sigmoid 
assumption. Importantly, these estimates shed light on the asymptotic behaviour 
of Tpred. For small values of K and m, the error is affected by some fraction of false 
nearest neighbours due to underembedding97, leading to an overestimate of the 
local expansion rate and consequently the positive Lyapunov exponents. This causes 
a drop in Tpred via the 1/λ term. On the other hand, as we increase K, the average 
Euclidean distance between nearest neighbours e1 steadily increases, leading to a 
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decrease in Tpred for high dimensions. This holds even when e1 is measured in the 
measurement space; large distances in state space now correspond to differences in 
points that are separated by a time longer than the correlation time. In the middle of 
these two extremes we find a range of suitable values for the embedding window K. 
The SVD coordinates are weighted by decreasing singular values, which correspond 
to the variance of the data projected along the different singular vectors. In the 
noiseless case, the singular values decay towards zero, while in the presence of noise 
they decay before saturating to the s.d. of the noise (termed noise floor in ref. 23), thus 
higher dimensions are generically dominated by noise in this case. Consequently, 
e1 does not increase as a function of m in the noiseless case, leading Tpred to saturate 
after successful embedding. However, in the presence of noise e1 increases, causing 
Tpred to go down. We note that our state space is defined by the left singular vectors of 
Y, which are unit norm.

Periodic orbits. The detection of periodic orbits from experimental data is made 
practical by various shadowing theorems, which state that any approximate 
orbit is shadowed by a true orbit of the dynamical system80,98,99. We follow the 
steps described in previous work51,100,101 to detect periodic orbits of length p, and 
identify close recurrences in the state space. First, we utilize the function ϵ(r, t) as 
defined in ref. 100, which gives the rth smallest distance between state-space points 
separated by time t. An example of this function for our data is shown in Extended 
Data Fig. 8a. The existence of periodic orbits is revealed when the local minima of 
ϵ(r, t) occur at regular intervals. The times at which the minima occur estimate the 
periods p, while ϵ(r, p) gives the minimum distance at which we must look to find 
a periodic orbit of length p. Consequently, any sequence [x(i), x(i + 1), …, x(i + p)] 
where ‖x(k) − x(i)‖ < ϵ(r, p) is stored as a periodic orbit of length p. If ϵ(r, t) does 
not show any local minima, then periodic orbits cannot be detected from the 
data. We only consider transverse recurrences to avoid sequential points and we 
set r ¼ m

I
, the dimension of the reconstructed state space. In the Jacobian and 

maximal exponent calculations described below, ϵ* is the distance corresponding to 
pmin, the first local minimum of ϵ(r, t).

Maximum Lyapunov exponent λmax. Our test for the exponential divergence of 
neighbouring trajectories follows standard approaches102. Specifically, we consider 
a reference trajectory x(t′ + τ) and its nearest neighbours within a distance ϵ* 
(Periodic orbits). We then track the average distance between the reference 
and neighbouring trajectories over time to obtain the curve δt′(τ). A substantial 
linear region in the 〈log δt′(τ)〉t′ curve indicates an exponential divergence of 
neighbouring trajectories, while the slope of the linear region provides an estimate 
of λmax. There is typically a transient before the exponential growth where the 
perturbation vector aligns itself with the Lyapunov vector corresponding to the 
maximal exponent. In the Lorenz system this transient arises from the finite size of 
the perturbation and vanishes in the infinitesimal limit (Extended Data Fig. 10c,d). 
Notably, the behaviour of worms off food is not stationary; there is a slow increase 
in the tendency to make longer forward runs as time progresses. We address this 
by only considering the last 2 min of the recordings, where the behaviour can be 
considered approximately stationary.

Jacobian estimation. The Jacobian at the point x(i) in state space, denoted Jx(i), is 
the derivative of the dynamics at x(i), forming the local linear approximation of 
the dynamics at that point. We use a modified version of the Jacobian estimation 
algorithm described in ref. 103, which solves a weighted regression problem 
Bx(i)

1 = Bx(i) · Jx(i), where points are assigned weights according to their distance from 
x(i) as per the weighting function defined below. Bx(i) is a ðT � KÞ ´ ðmþ 1Þ

I
 

matrix containing all weighted state-space points concatenated with a column of 
ones, while Bx(i)

1 is a ðT � KÞ ´m
I

 matrix containing all weighted successors. Each 
row of Bx(i) and Bx(i)

1 is weighted by wðkÞ ¼ expf� kxðiÞ�xðkÞk
ϵ

g
I

. The estimated local 
Jacobian matrix is then given by Jx(i) = Bx(i)

† · Bx(i)
1, where Bx(i)

† is the pseudoinverse of 
Bx(i), which we compute using the pinv function in MATLAB83. Note that ϵ* is the 
distance scale corresponding to the minimum period recurrence (Periodic orbits).

Lyapunov spectrum. To estimate the full spectrum of Lyapunov exponents, 
we calculate the long-time average (over the entire recording) of the estimated 
Jacobians by following the methods in refs. 104,105. Specifically, the estimated 
Jacobians are used to track the evolution of a set of orthonormal vectors Qi by the 
recursive QR decomposition scheme Jxiþ1Qi ¼ Qiþ1Riþ1

I
, where Q0 = I is the m × m 

identity matrix. The jth Lyapunov exponent is then given by λj ¼ 1
Δt

PT�1
i¼0 log ðRiÞjj

I
 

where (Ri)jj is the jth diagonal element of Ri and Δt is the sampling interval. The 
distribution of exponents in Fig. 5 and Extended Data Fig. 6b–d is obtained by 
bootstrapping the mean over all 12 foraging worms.

Floquet exponents. The real parts of the Floquet exponents of a periodic orbit, 
which measure their stability, are equal to the Lyapunov exponents of the orbit106. 
Thus, to estimate the Floquet exponents of a periodic orbit, we estimate the 
maximal local Lyapunov exponent along the orbit using the procedure described 
in the previous section. This is done by restricting the above calculation over the 
length of a specific periodic orbit; that is, the Jacobians Jxiþ1

I
 are restricted to the 

Jacobians along a periodic orbit, and the averaging is performed for the duration 
of the periodic orbit, that is μ1 ¼ 1

Δt

Pp�1
i¼0 log ð~RiÞ11

I
, where ~R indicates that the QR 

decomposition is only done for Jacobians along the periodic orbit.

Lyapunov exponents of random sequences. To calculate the exponents for short 
random sequences in Fig. 4c we proceed as above, but instead of performing the 
calculation over the entire recording we consider a trajectory starting at a random 
point in state space and follow it for the duration of a periodic orbit. Thus these 
sequences are the same length as a periodic orbit, but not necessarily recurrent.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Posture-mode time series for all worms analysed here are publicly available: https://
bitbucket.org/tosifahamed/behavioral-state-space. Original image data for the 
foraging and escape-response datasets were analysed previously37 and are available 
from the Dryad Digital Repository: https://doi.org/10.5061/dryad.t0m6p. Data 
for N2 worms on food and npr-1 mutants were collected from an open-access 
dataset84 and analysed to solve for coiled postures11. All other data that support 
the plots within this paper and other findings of this study are available from the 
corresponding author upon reasonable request.

Code availability
Code for all analysis reported here was written in MATLAB83 and is publicly 
available: https://bitbucket.org/tosifahamed/behavioral-state-space.
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Extended Data Fig. 1 | The predictability Tpred as a function of K and m for N = 12 individual worms. a, Tpred as a functon of K. b, Tpred as a function of m. 
We find similar curves across worms, despite the differences in their detailed dynamics. Note that while the distance metric in the SVD space (b) and the 
space of delays (a) is different, which could result in inconsistencies in the estimation of Tpred, we find only minor differences between the maximum Tpred in 
the two cases (gray bar in B). Inset shows the normalized singular value spectrum, which does not have a clear cutoff for any worm. c, Expanded inset in B 
showing the normalized singular value spectrum. d, State space captures a commonly observed sequence where long reversals transition to forward via a 
deep body bends seen here as a large excitation in Xt2 as the reversal ends. Here we see that the blue (backward) and red (forward) bundles are smoothly 
connected via a large transient along the turning mode Xt2

I
 (data from the example worm in Fig. 3b–e).
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Extended Data Fig. 2 | Dominant state space modes are stable across different embedding dimensions, with distinct groups independently capturing 
forward, reversal and turning behaviors. a–c, Behavioral modes estimated for the worm in Fig. 3 for dimensions, m = 6 (a), m = 7 (b), and m = 8 (c); 
embedding window is set to K = 12 frames. The modes retain their interpretability across dimensions. In a 6-dimensional embedding, there are two 
forward, two backward and two turning modes. In 7 dimensions one of the turning modes further splits into an omega-turn like mode (Γt3

I
) and a delta-turn 

like mode (Γt1
I

), while Γt2
I

 changes little. Furthermore, the reversal modes are more separable in 7 dimensions. The 8-dimensional state space retains the 
forward, reversal and turning dynamics along with an additional and subtle head-bending.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | The ensemble embedding across all N = 12 worms is constructed from their concatenated posture time series and characterized 
by K ¼ 10

I
 and m ¼ 7

I
. a–b, Tpred as a function of K and m. We set K ¼ 10

I
, approximately when Tpred begins to decrease, and show Tpred(m) at this K�

I
. 

We show the resulting modes for m = 6 and the gray bar denotes TpredðK ¼ KÞ
I

. c, m = 7 (d), and m = 8 (e), and these are qualitatively similar to those 
obtained from our representative worm of Extended Data Fig. 2. The additional modes present for embeddings greater than m ¼ 7

I
 offer only minor 

improvements in predictability.
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Extended Data Fig. 4 | Ensemble embedding for different values of K and m. a–c, Behavioral modes estimated from the ensemble for K = 5, and 
dimensions, m = 6 (a), m = 7 (b), and m = 8 (c). d–f, Same as above but for K = 15. The modes are qualitatively similar across this variation.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | The dominant off-food modes are similar to those of on-food roaming behavior and on-food behavior of npr-1 mutant worms. 
We analyze a collection of N = 25 on-food ‘roaming’ N2 worms, N = 25 on-food ‘dwelling’ N2 worms, and N = 7 on-food mutant npr-1 worms from an 
open access dataset84 (Methods, see also Extended Data Fig. 10a). We show Tpred(m) for (a) on-food N2 roaming worms and (b) on-food npr-1 mutants. 
c–d, Kymographs of the m ¼ 7

I
 primary modes from roaming and npr-1 worms coincide, both with each other and with the off-food N2 modes in Fig. 3. 

The similarity of these embeddings provide new, posture-scale evidence that the NPR-1 mutation overrides the switch to dwelling45. e–f, The combined 
embedding of roaming-dwelling on-food behavior exhibits an additional ~ 6 modes with small but notable additional Tpred, which was also observed in 
off-food behavior in the ensemble embedding, Extended Data Fig. 3, and for some individual worms, Extended Data Fig. 1b.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Maximum Lyapunov exponent for different worms and the full Lyapunov spectrum in different embedding dimensions. a, To 
quantify the state space divergence we plot the logarithm of the average distance between a trajectory and its nearest neighbors, averaged over several 
starting reference trajectories. For each worm we find that, after a transient, there is linear region showing exponential divergence. The slope of the linear 
region provides an estimate of the maximal Lyapunov exponent λmax and the positive exponents are an indication of chaos in worm behavior. b–d, Lyapunov 
spectra computed from reconstructions of worm behavior in different embedding dimensions. Conjugate pairing of Lyapunov exponents is robustly 
observed in dimensions 6 and above.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Detecting periodic orbits in the Lorenz System. a–e, We compare UPO trajectories for the Lorenz system computed from high 
precision numerical estimates52 (red) with periodic orbits detected using our recurrence based approach (grey) (only 3 UPOs are shown for period 5). The 
closely-matching trajectories also exhibit agreement between the Floquet exponents estimated from analytical Jacobians (red text) and Local Lyapunov 
exponents obtained from the estimated Jacobians (grey text). Note that in (e), a fixed point (period-0 orbit) can only be detected by neighboring spiraling 
trajectories, leading to an overestimation of the exponent. f, Boxplot comparing the entire distribution of Floquet exponents for UPOs up to period 10 (red 
bars denote the median).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Recurrence Function and Period-1 UPOs. a, The recurrence function ϵ(r, t) from the same worm in Fig. 3 for 120 frames and 5000 
closest recurrences (top). Local minima of this function at times t*, as seen in the average 〈ϵ(r, t)〉r shown below correspond to close recurrences and 
identify periodic orbits of length t*. The first local minimum is the smallest period pmin, which is 37 frames in this example. For a given value of r, ϵ(r, t*) 
gives the distance threshold at which we must look to find a periodic orbit of length t*. b, Probability distribution of phase velocities _ϕ and third eigenworm 
coefficient a3, which is proportional to mean body curvature, across all period-1 orbits of duration pmin from all worms in the dataset. We see two clusters 
corresponding to forward and backward locomotion, as well as orbits with a dorsal or ventral bias (for example orbits at bottom right and top left). c, 
Example period-1 orbits from the same worm in (a) corresponding to forward (top) and backward (bottom) locomotion.
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Extended Data Fig. 9 | Example E(τ) curves. a, Error curves are plotted for different embedding dimensions for the Lorenz system state space 
reconstruction ðK ¼ 25Þ

I
. b, Error curves in different embedding dimensions for the sample worm in Fig. 3b–e. Better embeddings lead to a lower error 

curve. The ratio of the area between these curves and the saturation value es to es estimates Tpred. c, A schematic showing the fixed point algorithm for 
robust estimation of the asymptote es, and the area Δ.
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Extended Data Fig. 10 | Roaming/dwelling states and further embedding details. a, Centroid speed and angular speed (averaged in 10 s windows) for 
the collection of worms used in the N2 on food dataset (red and blue) and the npr-1 dataset (black).We initially collected 150 recordings of N2 worms 
crawling on food-full plates from an open dataset84. From these, we selected 25 worms with a large fraction of dwelling states (blue) and 25 worms with 
a large fraction of roaming states (red), defined as in17. We downsample the data to 3 Hz (consistent with17), and average the centroid speed and angular 
speed in 10 s windows. Roaming and dwelling states are identified by a threshold defined by the line y = x/450 in the plane defined by x, the angular speed, 
and y, the centroid speed. Points above the line (high speed and low angular speed) are classified as roaming, while points below the line (low speed and 
high angular speed) are classified as dwelling. Data from npr-1 mutants (black) show predominantly roaming behavior, consistent with previous reports45. 
b, Example of the one step error, E(1, Nb) curve used to pick the number of nearest neighbors. This was calculated on the same worm as in Fig. 3b–e. c, A 
transient can be seen For the Lorenz system before the linear regime indicating exponential growth of local finite-sized perturbations (sized ≈ 10−4) begins. 
d, Transient decreases when perturbations of size ≈ 10−8 are used.
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