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The “connectome,” a comprehensive wiring diagram of synaptic connectivity, is
achieved through volume electron microscopy (vEM) analysis of an entire nervous
system and all associated non-neuronal tissues. White et al. (1986) pioneered the
fully manual reconstruction of a connectome using Caenorhabditis elegans. Recent
advances in vEM allow mapping new C. elegans connectomes with increased
throughput, and reduced subjectivity. Current vEM studies aim to not only fill the
remaining gaps in the original connectome, but also address fundamental questions
including how the connectome changes during development, the nature of individuality,
sexual dimorphism, and how genetic and environmental factors regulate connectivity.
Here we describe our current vEM pipeline and projected improvements for the study of
the C. elegans nervous system and beyond.

Keywords: C. elegans, volume electron microscopy, connectome, nervous system, high-pressure freezing

A BRIEF BACKGROUND OF Caenorhabditis elegans
CONNECTOMICS

In the 1960s, Sydney Brenner and colleagues adopted the nematode Caenorhabditis elegans Q7

as a model to better understand the development and function of a complete nervous
Q8

Q9
system. Part of their strategy was to reconstruct the entire synaptic wiring diagram of a
nervous system using manual volume electron microscopy (vEM). C. elegans was a wise
choice. Its small size, a cylinder of ∼1 mm in length and 70 µm in diameter, provided
a reasonable chance of success with the laborious and technically challenging procedures
required for vEM. Nichol Thompson developed the essential skill in cutting long series of
serial sections without gaps. Initial successes included reconstructions of the anterior sensory
anatomy (Ward et al., 1975; Ware et al., 1975), the pharyngeal nervous system (Albertson
and Thomson, 1976), and the ventral nerve cord (White et al., 1976). When John White
and Eileen Southgate succeeded in tracing the nerve ring, the first near-complete wiring
diagram of an animal’s nervous system was obtained (White et al., 1986; White, 2013).
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The C. elegans connectome provided the first comprehensive
physical map through which information flows to select,
enact, and modify motor functions. This structural foundation
first allowed the formulation and experimental validation of
hypotheses for mechanosensory and motor behaviors (Chalfie
et al., 1985). The small number of neurons and their connections
has since inspired numerous theoretical and experimental studies
to model entire sensorimotor circuits (e.g., Varshney et al., 2011;
Towlson et al., 2013; Szigeti et al., 2014; others).

With the recent emergence of wiring diagrams for whole
circuits in other invertebrates and some vertebrates (e.g.,
Helmstaedter et al., 2013; Takemura et al., 2013; Randel et al.,
2014, 2015; Kasthuri et al., 2015; Ryan et al., 2016, 2017; Eichler
et al., 2017; Veraszto et al., 2017; Williams et al., 2017; others), the
search for conserved features and circuit motifs that might have
homologous functions across species becomes possible.

Caenorhabditis elegans connectomics will play a crucial role
in uncovering general principles of neural circuit structure and
function. The C. elegans nervous system embeds computational
properties sufficiently powerful for many complex behaviors:
different motor patterns and states, adaptive, and integrative
sensory perception, as well as forms of associative learning
and memories (Zhang et al., 2005; Ardiel and Rankin, 2010;
Sasakura and Mori, 2013; Allen et al., 2015; Zhen and Samuel,
2015). Its small and accessible size – both in terms of neuron
number (∼300) and synapse number (∼7000) – makes it a
tractable system to propose and test theoretical models of nervous
system function. If the circuit designs that enable sensory coding,
decision-making, and plasticity are evolutionarily conserved,
understanding mechanisms of the compact C. elegans nervous
system will yield useful insights into shared principles.

Progress still needs to be made at multiple fronts in C. elegans
connectomics.

First, the original C. elegans connectome was assembled from
partially overlapping fragments of a few individuals, not one
intact individual (White et al., 1986). The validity of this approach
hinges on the stereotypy of the wiring diagram across individuals.
The stereotypy observed for most C. elegans cells identified
by lineage studies (Sulston and Horvitz, 1977; Sulston et al.,
1983) and preliminary comparison of the central nervous system
connectivity of two animals (Durbin, 1987) made this plausible.
However, an explicit analysis of variability across connectomes of
multiple individuals is required.

Second, postembryonic neurogenesis occurs across C. elegans
development. Post-embryonically born neurons make up ∼25%
of neurons in the adult. The original C. elegans connectome
was assembled from parts of several adults and one last stage
larva, reflecting one snapshot of a dynamic wiring diagram.
How the connectome develops, remodels to incorporate newly
born neurons, and modifies the behavioral repertoire at different
developmental stages needs to be addressed.

Third, sexual dimorphism is prominent in the C. elegans
nervous system. Compared to adult hermaphrodites, adult males
have an additional 85 neurons, accounting for ∼20% of the
nervous system (Sulston and Horvitz, 1977; Sulston et al., 1980;
Sammut et al., 2015; Molina-Garcia et al., 2018). Though progress
has been made on the wiring of parts of the male nervous system

(Hall and Russell, 1991; Jarrell et al., 2012), a complete and
comprehensive side-by-side comparison of high-quality male and
hermaphrodite connectomes awaits.

Fourth, natural variants of C. elegans exhibit substantial
genetic and behavioral differences from that of the laboratory
wild-type strains. The connectomes of these and other nematode
species should be obtained and compared.

Addressing questions about individual variability,
developmental plasticity, sexual dimorphism, genetic
perturbations, and so on requires higher-throughput vEM
reconstruction. Recent focus on technology development, such
as automation in serial sectioning (Schalek et al., 2012), image
acquisition (Inkson et al., 2001; Denk and Horstmann, 2004;
Holzer et al., 2004; Heymann et al., 2006; Knott et al., 2008;
Hayworth et al., 2014), and segmentation of neurons and
connections (Saalfeld et al., 2009; Helmstaedter et al., 2011;
Cardona et al., 2012; Boergens et al., 2017), has accelerated
vEM throughput. Originally designed to allow acquisition
of connectomes of single large samples, these technological
advances offer small model systems such as C. elegans an
opportunity to employ vEM as a rapidly deployable tool for
developmental and comparative connectomics, and other aspects
of nematode biology.

Below we describe such a pipeline.

OUTLINE OF A PIPELINE FOR CURRENT
C. elegans EM STUDIES

This pipeline has been successfully used for high-throughput
volume reconstruction of intact C. elegans of all developmental
stages, and has yielded high-resolution connectomes for multiple
animals (Figure 1; Witvliet et al., in preparation). We describe
technical issues general to vEM studies and highlight key
technical considerations for C. elegans.

Step 1: Preparing Samples for EM
Rapid freezing of living animals facilitates uniform vitrification.
Subsequent freeze-substitution and fixation allows preservation
of organelles, cells, and tissues in their native states. Due
to its small size, intact C. elegans is well suited to high-
pressure freezing, circumventing the mechanical damage and
physiological perturbation caused by dissection. Through
standard en bloc and post-sectioning staining with heavy metals,
sufficient contrast can be imparted to lipids, proteins, and nucleic
acids for visualization with an electron microscope.

Step 2: Serial Sectioning
The thickness and number of serial sections are determined
by the sectioning method, as well as the size of the object of
interest. Reducing section thickness facilitates reconstruction of
fine cellular structures (such as neurites), and distinction between
intracellular features (such as vesicles, ER, and microtubules).
Because of the small diameter of C. elegans neurites, serial
sections of 50 nm or thinner are needed for reliable connectome
reconstruction.
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FIGURE 1 | AQ5 pipeline

Q6

for C. elegans connectome reconstruction using vEM. Samples are fixed using high-pressure freezing and freeze substitution, embedded in
plastic then cut into ultrathin serial sections before imaging on an electron microscope. Images are stitched together into a 3D volume, and neurons are identified and
traced throughout the dataset by skeleton tracing using CATMAID. Synapses are annotated by three independent annotators to obtain the connectome. Volumetric
reconstruction, which yields topographical information of cells and neurons, is facilitated by computational filling followed by manual proofreading using VAST.

Step 3: Image Acquisition and
Processing
Image resolution is set by the size of object of interest. For adult
and larval connectome reconstructions, a resolution of 1–2 nm
per pixel is optimal for reliable synapse annotation. A montage
of images that cover the area of interest are computationally
stitched and aligned into a 3D volume. Minimization of artifacts
during sample preparation (e.g., mechanical compression during
sectioning) and imaging (lens distortion and shrinkage during
electron beam exposure), and their correction are critical for
acquiring a well-aligned image volume.

Step 4: Segmentation
The aligned image stacks are segmented into objects of interest.
For connectomes this means tracing neurons and mapping
synapses. Volumetric segmentation consists of coloring in each
section of neurite throughout the volume, reconstituting the 3D
morphology of the cell. Skeleton segmentation consists of placing
a point in the center of the neurite on each section. Tracing
skeletons is faster than volumetric segmentation, but less rich in
morphological detail.

Step 5: Synapse Annotation
Synapse identification is based on stereotypic ultrastructural
features. A sample with well-preserved neurite morphology
and intracellular organelles, such as presynaptic active zones
and synaptic vesicles, facilitates high-confidence annotation
of chemical synapses. However, synapse annotation is not
completely objective. Subjectivity arises in the identification
of small synapses, gap junctions, and assigning postsynaptic
partners for polyadic synapses. Increased section thickness,
section and staining artifacts, and unfortunate synapse
orientation relative to the plane of sectioning also increase
subjective uncertainty. Parallel annotation of the same dataset

by multiple tracers, constructing connectomes from multiple
animals, and comparing with existing datasets help to reduce
annotation errors.

Step 6: Neuron Identification
Every somatic C. elegans cell can be assigned a unique name.
The location and identity of each nucleus was lineage-mapped
by following its migration throughout development (Sulston
and Horvitz, 1977; Sulston et al., 1980, 1983; White et al.,
1986). Additionally, all processes within the neuropils have
characteristic features, allowing identification without necessarily
tracing the process back to the cell body. Stereotypic features
include entry-point into the neuropil, neurite trajectory and
morphology, placement within the neuropil, abundance of clear
and dense-core vesicles, multi-synapse clusters, and unique
morphological features. Each neuron can be identified by
characteristic features at multiple points along its process,
increasing the confidence of tracing.

STEP-BY-STEP DESCRIPTION OF
METHODS AND CONSIDERATIONS

Preparation of EM Samples
General Considerations for High-Pressure Freezing
and Freeze Substitution
For the original C. elegans wiring diagram reconstruction,
animals were submerged in one or more chemical fixatives,
either glutaraldehyde followed by osmium tetroxide, or osmium
tetroxide alone (White et al., 1986). Some animals were cut by
razors to aid the diffusion of fixatives through the tissue. This
fixation process is not instantaneous (e.g., tomato hair cells have
been estimated to be fixed at a rate of 2 µm/s in a glutaraldehyde-
cacodylate solution; Mersey and McCully, 1978), and distortions
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to native ultrastructure occur before fixation is complete (Smith
and Reese, 1980; Gilkey and Staehelin, 1986; Figures 2A,C).

A better strategy for tissue preservation involves rapid freezing
of samples in vitreous ice, dehydration at low temperatures to
prevent the growth of damaging ice crystals, and simultaneous
fixation. In early work in other experimental systems, this was
achieved by subjecting samples to extremely low temperature
(around −175◦C), either by plunging the sample into cold
liquids, propelling the cold liquid at the sample (Feder and
Sidman, 1958; Moor et al., 1976), or slam freezing – dropping
tissue onto a metal block cooled with liquid nitrogen or helium
(van Harreveld and Crowell, 1964; Heuser et al., 1979; Heuser
and Reese, 1981). Vitreous ice typically forms only within a
few micrometers from the surface of the tissue. However, when
water is pressurized to 2100 atmospheres, vitreous ice forms
more easily and deeply (Kanno et al., 1975; Dahl and Staehelin,
1989; Dubochet, 2007). By applying this level of pressure during
rapid freezing, Hans Moore and Udo Riehle obtained good
preservation several hundred micrometers from the surface of
biological tissues (Riehle, 1968; Moor, 1987).

Frozen samples are then freeze-substituted, a process where
the immobilized water is dissolved by an organic solvent
(Simpson, 1941). Fixatives such as osmium tetroxide are included
in the freeze substitution solvent to fix the sample as it is warmed
to room temperature. Once the sample reaches −80◦C, secondary

FIGURE 2 | High-pressure freezing improves preservation of ultrastructure.
(A) The dorsal cord of an adult prepared using the slow chemical fixation
protocol (White et al., 1978). The DD motor neuron is making a neuromuscular
junction to dorsal muscle cells. (B) The dorsal cord of an adult fixed using
high-pressure freezing and imaged using TEM. The DD motor neuron is
making a neuromuscular junction to dorsal muscle cells. (C) The ventral nerve
cord of a chemically fixed first stage (L1) C. elegans larva (White et al., 1978).
The DD axon makes a NMJ to the ventral muscle cell (M). (D) A TEM
micrograph of the ventral nerve cord of a high-pressure frozen first stage larva
(L1) at similar region, where DD makes a NMJ to the ventral muscle cell. The
advent of high-pressure freezing allows better preserved neurite morphology,
synapse structure, and extracellular space, facilitating connectomic and
topological analyses of the C. elegans nervous system. Scale bar 1 µm. Panel
(A) was reprinted with permission from White et al. (1978). Panel (C) a scan of
the micrograph used in White et al. (1978), hosted by the WormImage
Consortium (www.wormimage.org).

ice crystals may grow and disrupt ultrastructure (Steinbrecht,
1985; but see Dubochet, 2007). Thus, organic solvents that
are liquid below −80◦C, such as acetone, are used for freeze
substitution.

The recent availability of commercial high-pressure freezers
has made this approach more accessible. Successful high-
pressure freezing and freeze-substitution of C. elegans preserves
ultrastructure and extracellular space better than chemical
fixation (Figures 2B,D).

High-Pressure Freezing of C. elegans
Basic protocols for high-pressure freezing of a range of organisms
including C. elegans have been described (e.g., Weimer, 2006;
McDonald, 2007; Manning and Richmond, 2015). Below is a
modified procedure that we have used successfully with both
the Leica HPM100 and ICE models of high-pressure freezing
machines.

(a) The carriers in which animals will be frozen (Leica
Microsystems, Germany, catalog nos. 16770141 and
16770142) are coated with a non-stick coating (0.1% soy
lecithin in chloroform, or 1-hexadecene; McDonald et al.,
2010). This coating prevents samples from sticking to
the carrier, minimizing damage to samples when they are
removed from the carrier.

(b) Worms can be loaded into the 100 µm side of the base
carrier using several means (see Tips). The simplest and
most effective method is to grow a thick lawn of bacteria
and a dense population of worms, and swipe the carrier at
an angle of 45◦ across the surface of the plate to pick up
worms with bacteria (Figure 3A). Bacteria act as a filler,
minimizing water content and facilitating freezing.

(c) The lid of the carrier is placed on the base immediately
prior to freezing (Figure 3B). To preserve animals in their
physiological state, we transfer worms from happily eating
bacteria on the culture plate to a state of vitreous ice within
30 s.

(d) After freezing, metal carriers that encase frozen samples are
transferred under liquid nitrogen into a pre-frozen 1.5 ml
cryotube containing 1 ml freeze-substitution solution (see
next section), and then to a freeze-substitution unit for
processing.

Tips:

• Soy lecithin is an emulsifier that can be obtained
economically from baking or health food stores.

• Samples are packed in the 100 µm side of the base carrier
because freezing efficiency decreases with increasing depth.

• It is critical that the carrier is completely filled, and there
are no air bubbles, which would act as an insulator and also
collapse under pressure.

• To freeze samples at defined developmental stages, we
either use a synchronized culture, or first fill the carrier with
filler, and pick individual animals into the filler. A mixed
paste of 10% BSA (dissolved in M9 buffer) and OP50
(an E. coli strain commonly used as worm food) forms a
nice filler that does not dry up quickly during the loading
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FIGURE 3 | High-pressure freezing of C. elegans. (A) To pack the carrier with
worms, our preferred method is to swipe it across a densely packed lawn of
worms and bacteria. After swiping, the worm-bacteria mixture is spread
across the cavity of the carrier with tweezers or a worm pick (a thin platinum
wire mounted to a holder), the lid put in place, and the sample immediately
high-pressure frozen. The entire process takes less than 30 s. (B) A carrier
when it is packed. It is filled just right, without air bubbles. The smallest cavity
for freezing is used, as freezing efficiency decreases with increasing depth.
(C) A carrier packed with a mixed-staged larva after high-pressure freezing,
freeze substitution, and resin infiltration. This carrier has retained the “cake” of
worms, but much of the time the cake floats out. One can see how densely
the worms are packed by the swiping method. (D) Worms are separated from
the cake and individually embedded and cured in plastic blocks. Well-packed
carriers as shown in panel (C) can yield hundreds of intact worm samples.

of individual animals, and allows separation of individual
worms after freeze-substitution.

• Samples need to be frozen soon after loading into the carrier
to prevent desiccation.

• Some protocols take steps to straighten C. elegans prior
to freezing, either using pharmacological agents (Hall,
1995), or cooling carriers (Bumbarger et al., 2013). We do
neither, to eliminate the chance of introducing changes to
ultrastructure.

Freeze Substitution With C. elegans Samples
For morphological analyses, freeze substitution is performed
in a programmable freeze substitution unit, where frozen
samples are kept at −90◦C in the presence of tannic acid and
glutaraldehyde, before being replaced by 2% OsO4, and brought
to room temperature (Box 1; Weimer, 2006). ThisQ12 protocol yields
consistent results as long as samples are handled properly (see
section “General Considerations for High-Pressure Freezing and
Freeze Substitution”), and the high-pressure freezer is properly
assembled and maintained.

This protocol can be further modified to reduce processing
time and increase the membrane contrast, with the following
considerations. Tannic acid helps target osmium to the
membrane (Bridgman and Reese, 1984), but glutaraldehyde,
inactive at −90◦C (Bridgman and Reese, 1984; McDonald,
2007), is likely expendable for the first-step fixation. Inclusion
of 5% water in the organic solvent may improve membrane
staining (Walther and Ziegler, 2002; Buser and Walther, 2008).
To increase heavy metal deposition one can use a mordant to

perform a double osmium stain, such as tannic acid (Simionescu
and Simionescu, 1976; Wagner, 1976; Jiménez et al., 2009), or
thiocarbohydrazide (Seligman et al., 1966; Webb and Schieber,
2018), followed by further en bloc uranyl acetate and lead
acetate staining (Webb and Schieber, 2018). Lastly, we have
confirmed that a fast freeze substitution protocol lasting just a
few hours (McDonald and Webb, 2011) also yields well preserved
C. elegans.

Infiltration and Embedding C. elegans Samples in
Resin
After freeze substitution, the sample needs to be infiltrated with
resin and cured in a block. We infiltrate in the same cryotube
used for freeze substitution, either in graded steps on a rocker,
or employing a fast protocol using centrifugation (McDonald,
2014). For morphology studies carried out by standard TEM and
ATUM-SEM, we use Spurr-Quetol resin (NSA 27.88g, ERL4221
9.70g, DER 4.50g, Quetol651 6.12g, and BDMA 0.87g; Ellis,
2006) because it has good sectioning and staining properties,
and a relatively low viscosity. For serial block face and FIB-
SEM imaging, samples are infiltrated and cured with harder
resins, such as hard Epon (EMbed 812 22.6g, DDSA 9.05g,
NMA 14.75g, and DMP-30 0.8g) or Durcupan (Durcupan ACM
resin 11.4g, DDSA 10.0g, dibutyl phthalate 0.35g, and DMP-30
0.15g).

Once infiltrated, contents of the cryotube are poured into
a plate ready for embedding. By this stage, the disk-shaped
“cakes” of worms and bacteria will often have fallen out of
their carriers. If they are still inside the carrier (Figure 3C),
an intact cake can be pried out of the coated carriers using
the fine tip of a broken wood stick while holding the carrier
in place with tweezers. Using a wooden stick instead of metal
instruments is gentler on both the sample and the carriers.
We embed either the whole cake, or individual worms released
from the cake by repeatedly tapping the cake with the tip of
a broken wooden stick until the bacteria crumble away, and
intact worms remain (a delicate procedure, especially for young
larvae).

Horizontal molds are used to cure samples, as we find it easier
to orient samples for subsequent serial sectioning. To place the
worm in the center of the block, which makes trimming and
cutting easier, we semi-cure half-filled molds by putting them at
60◦C for a few hours, let cool, then fill to the top with fresh resin.
After we transfer and orient the worms as desired inside the mold,
they are cured at 60◦C for at least 24 h. The resulting blocks are
ready for cutting (Figure 3D).

Serial Sectioning
Imaging sequential layers of a sample normally requires
collecting serial sections for the sample. Although block face
imaging techniques avoid this step (Inkson et al., 2001; Denk
and Horstmann, 2004; Holzer et al., 2004; Heymann et al., 2006;
Knott et al., 2008), samples are destroyed during imaging. There
will always be applications for obtaining and preserving long
image series. Many effective techniques have been developed (see
Box 2).
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Box1 | Some freeze substitution protocols for C. elegans volume EM. Both A and B are effective protocols for ultrastructural preservation (Weimer, 2006).

Manual Serial Sectioning for TEM
(a) Trim the block, leaving a wide surface with the worm in the

center (the final block face will be ∼0.7 mm wide).
(b) Collect semi-thin sections when approaching the region of

interest using a glass knife. Perform toluidine blue staining
to determine the position. Collect ultrathin sections and
examine using TEM if precise positioning is necessary.

FIGURE 4 | Cutting serial sections for TEM. (A) A block face trimmed for
cutting. The worm is oriented transversely in the center of the block face (white
arrow). (B) Ribbons of 10–20 sections are picked up on formvar-coated slot
grids. (C) A low magnification TEM image of a slot grid, 0.5 mm in diameter.
The ribbon of section spans the slot, contributing to the formvar stability.
(D) Many grids of serial sections, stored in a grid box, are ready for imaging.

(c) Once the desired starting position is reached, re-trim the
block into a trapezoid with the worm in the center. The
height of the trapezoid should be as close to the top and
bottom edges of the worm as possible, and the width should
be ∼0.7 mm (Figure 4A). Gently dab a thin layer of glue
(Elmer’s rubber cement, in a mixture of 1 part glue, 3 parts
xylene) to the bottom edge of the block to aid the ribbon
formation.

(d) 50 nm serial sections are cut using an ultramicrotome with
an antistatic device (we use Static Line Ionizer II, Diatome).
Cut as many sections as will fit in the water boat in a single
unbroken ribbon. Use a pair of eyelashes glued to wooden
sticks to break the long ribbon into smaller ones, which
contain 10–20 sections and are able to fit inside a slot grid
(Figures 4B,C).

(e) Collect the small ribbons on formvar-coated slot grids.
Submerge a grid underneath a ribbon. Hold and align the
ribbon with an eyelash, and raise the grid at a 30◦ angle until
the bottom section adheres at the top of the slot. Gently pull
up the grid, and the rest of the sections will come with it,
with the worm in the center of the slot.

(f) Allow grids to dry before transferring into grid boxes for
storage.
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Box2 | A collection of sectioning strategies for vEM. vEM using non-block face imaging (TEM and SEM) requires collecting large unbroken series of serial sections.
There are multiple ways of making the process less error-prone, each with its own merit. One simply has to choose which process works best for them, or devise
their own strategy. 1Gay and Anderson (1954);2Westfall and Healy (1962); 3Fahrenbach Wolf (1984);4Galey and Nilsson (1966); 5Mironov et al. (2008);6Anderson
and Brenner (1971);7Rowley and Moran (1975); 8Abad (1988); 9Wells (1974); 10Mironov et al. (2008); 11Stevens et al. (1980); 12Hall (1995); 13Schalek et al.
(2012);14Micheva and Smith (2007); 15Burel et al. (2018); 16Leica Microsystems, Germany.
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FIGURE 5 | Skeleton and volumetric reconstruction of the C. elegans nervous system. (A) A complete reconstruction of all nuclei (round balls) and all neuronal
processes (blue cables) of a first larval stage C. elegans, achieved through skeleton tracing in CATMAID, and visualized with Blender. (B) A skeleton reconstruction of
anterior DD-type motor neurons and the neuromodulatory neuron RID generated using CATMAID. Synaptic input and output are indicated by cyan and red spheres,
respectively, and putative gap junctions in marked in dark purple. (C) Volumetric segmentation of part of a DD motor neuron and RID using TrakEM2, with
intracellular ultrastructure segmented. (D) A cross-section of an L1 larva. Its nerve ring was fully reconstructed by volumetric segmentation. These segmentation
profiles were generated by expanding skeleton seeds to a membrane probability map, followed by manual proofreading in VAST.

(g) Once all sections are picked up, repeat cutting until
required volume is complete.

(h) Sections are post-stained with 2% aqueous uranyl acetate
and 0.1% lead citrate.

Tips:

• We use 2 mm × 0.5 mm slot grids (instead of 2 mm × 1 mm
grids) as there is less chance of damaging the formvar film
during handling.

• For serial section datasets, we use commercially prepared
10 nm-thick formvar grids (EMS catalog no. FF205-Cu).

• Make the block face slightly wider than the width of the slot.
When the plastic sections span the slot, they contribute to
grid stability, reducing the chance of disaster if the formvar
is imperfect or becomes damaged (Figure 4).

• Using a 35◦ diamond knife reduces section compression.
• Holding a stick dipped in xylene or chloroform above the

sections corrects compression, but take care not to over-
stretch the samples.

• For observing fine details, and tracing neurons that run
across the plane of sectioning, 50 nm sections or thinner
are necessary.

• The loss of a few sections of a C. elegans nerve
ring can invalidate the whole dataset for connectome
reconstruction. Not only is it difficult to trace through
neurons, synapses will also be missing from the final
dataset. Handle the grids with care.

Automation of Serial Sectioning for SEM
Alternative methods have been devised to automatically cut
large volumes of serial sections, including the automated tape
collecting ultramicrotome (ATUM; Schalek et al., 2012). Here, the
sample is cut on an ultramicrotome and picked up by a rolling
reel of tape. The tape is cut into strips, glued to a wafer and post-
stained with uranyl acetate and lead citrate. Electrons cannot pass
through the tape, therefore scanning electron microscopy (SEM)
must be used to image samples cut using an ATUM. We have
used this approach to collect serial sections at 30 nm thickness,
and used a SEM capable of high resolution imaging (1 nm/pixel;
FEI Magellan XHR 400L) to acquire several high-quality datasets
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for C. elegans connectomics studies. Modern high-end SEMs
are capable of producing TEM-equivalent micrographs and are
suitable for identifying both chemical synapses and gap junctions
with high confidence (e.g., Figure 6Q13 ).

In contrast to the traditional approach of cutting, staining,
then imaging sections in an electron microscope, new methods
have been established to mount an uncut sample inside the
microscope, image the surface using SEM, cut off the top layer,
and image again. This process is repeated until the entire region
of interest is processed. The cutting uses either a diamond
blade inside the microscope (serial block face EM; Denk and
Horstmann, 2004), or of a focused ion beam (FIB-SEM; Inkson
et al., 2001; Holzer et al., 2004; Heymann et al., 2006; Knott et al.,
2008). Both applications can produce images of large volumes
for connectomics studies in an exceptionally short amount of
time (Briggman and Bock, 2012). Without post-section staining,
however, both SBF-SEM and FIB-SEM rely on en bloc staining for
contrast.

Image Acquisition and Processing
For connectome reconstruction, we acquired images of entire
C. elegans cross-sections by either TEM or ATUM-SEM, at 1–
2 nm/pixel resolution. We found such a resolution to be necessary
for unambiguous annotation of intracellular structures, tracing
through small neurites, and synapse annotation. Acquiring the
entire cross-section not only allowed us to fully reconstruct
dorsal-ventral commissures and lateral nerve cords, but also
provided landmarks that facilitated neuron identification.

After sections are imaged, they are stitched and aligned
into a 3D volume. This requires processing of acquired images
to compensate for artifacts generated during sectioning (e.g.,
differential compression of sections), and imaging (e.g., lens
distortion, shrinkage of samples due to the energy of the electron
beam). There are multiple solutions for alignment of datasets into
3D volumes (reviewed in Borrett and Hughes, 2016). We found
TrakEM2 (Saalfeld et al., 2010; Cardona et al., 2012) to be most
suitable for our C. elegans datasets, and we outline the process
below.

(a) Sections are imaged at the required resolution in the
electron microscope. Imaging at a resolution of 1–2 nm
per pixel is optimal for tracing fine processes and mapping
small synapse with high confidence.

(b) When a region of interest does not fit into the field of view
of the camera, it is imaged as a montage with 10% overlap
on each side.

(c) A text file is generated containing the paths to the images
and their respective coordinates in x, y, and z, then used to
import the dataset into TrakEM2.

(d) Once the dataset is imported into TrakEM2, image filters
are applied to optimize brightness and contrast throughout
the dataset.

(e) The lens correction function in TrakEM2 is used to correct
for lens distortion caused by imperfect lenses in the electron
microscope. Using a set of heavily overlapping images,
the distortion of images is calculated, and a correction is
applied to each image in the dataset.

FIGURE 6 | Chemical synapses and gap junctions in C. elegans. (A) A section
of the first larva (L1) ventral ganglion neuropil imaged using SEM at 1 nm/pixel.
Multiple chemical synapses are visible (white arrows) as well as a gap junction
(white flat-ended line). (B) Enlarged view of the chemical synapse highlighted
with a dashed box in panel (A). There is a presynaptic dense projection and a
pool of synaptic vesicles, as well as some dense core vesicles further back in
the neurite. This synapse is polyadic, releasing onto three neurons.
(C) Enlarged view of the gap junction highlighted with a dashed box in panel
(A). There is a relatively flat area of close apposition between the membranes.

(f) Each section is montaged rigidly in x-y using the TrakEM2
least-squares alignment tool.

(g) Each section is montaged elastically in x-y using the
TrakEM2 elastic alignment tool.

(h) Layers are aligned rigidly in z using the TrakEM2 least-
squares alignment tool.

(i) Layers are aligned elastically in z using the TrakEM2 elastic
alignment tool.

(j) Images are exported from TrakEM2 either as flat images, or
tiles ready for importing into an instance of CATMAID.

Tips:

• Samples on slot grids shrink when exposed to the electron
beam. We reduce the shrinkage by coating these grids with
a thin layer of carbon, and “prebaking” each section at a
lower magnification in the electron beam for around 1 min
before imaging.

• Automatic montaging is a function available in some
camera softwares (e.g., Gatan Microscopy Suite). Free
software such as SerialEM is capable of performing
montages and compatible with a range of cameras
(Mastronarde, 2005 Q14).

• Text files with paths to the images and coordinates can
be generated in various ways. We use a Python script to
extract the paths from the folder containing the images, and
set the coordinates. It can also be done manually in Excel.
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Consistent file naming and number padding facilitate this
step.

• Adjustable parameters for stitching are numerous and
daunting. The TrakEM2 manual1 and ImageJ feature
extraction page2 provide guides for parameter selection.
Optimal parameters for each dataset have to be worked out
through trial and error. Test a few sections at a time until all
images can be reasonably well aligned.

• Manual inspection and correction is necessary for each
step. We frequently use the transform function while
superimposing a transparent copy of the previous layer
to register poorly aligned sections. Using manually placed
landmarks to register multiple sections is also an effective
strategy.

• Care must be taken not to distort or twist the images whilst
proceeding through the image stack.

Segmentation
We have used several open-source software packages for manual
segmentation of image stacks. For small image stacks, we have
used Reconstruct (Fiala, 2005; Yeh et al., 2009; Hung et al.,
2013) and TrakEM2 (Cardona et al., 2012; Meng et al., 2015;
Lim et al., 2016) for volumetric reconstruction. For connectomics
studies, which requires handling of large image datasets, we have
used CATMAID (collaborative annotation toolkit for massive
amounts of imaging data; Saalfeld et al., 2009) for skeleton
tracing, and VAST (Volume Annotation and Segmentation Tool;
Kasthuri et al., 2015) for volume reconstruction.

Skeleton Tracing With CATMAID
To generate C. elegans connectomes, we apply skeleton tracing
to reconstruct all neurons and their connectivity. Skeleton
tracing consists of placing dots, or “nodes,” in the center of a
neurite throughout the volume, forming a skeleton as the tracing
progresses. Compared to volumetric reconstruction, skeleton
tracing allows faster manual reconstruction of the nervous
system. With a high-quality dataset, a first larval stage nerve
ring (the worm central nervous system) can be manually traced
to completion by a well-trained and committed tracer in a
few days. As neurons are traced, they are identified based
on stereotypic structures and connectivity patterns, along with
neurite trajectory and placement, and cell body position (see
below). Ambiguities may arise due to artifacts such as section
folding or stain precipitation, and can be resolved by completing
the tracing of the rest of the neurons in the immediate area.
Neurons are identifiable by features distributed throughout the
nerve ring.

After neurite tracing is complete, connectors can be placed
between nodes of different skeletons to signify chemical synapses
and gap junctions. Visualization of neuron skeletons in 3D is
often sufficient for assessing the coarse position and process
trajectory of individual neurons, as well as the overall architecture
of neuropils and ganglia (Figures 5A,B). However, substantial
morphological information is omitted.

1www.ini.uzh.ch/ acardona/trakem2_manual.htmlQ11
2http://imagej.net/Feature_Extraction

Volumetric Segmentation With VAST
To accurately obtain morphological information such as neuron
size, shape, and the relative contact area between neurons,
volumetric segmentation is necessary. Additional segmentation
of intracellular ultrastructure can yield information such as the
distribution, morphology, number, and size of microtubules,
mitochondria, ER, presynaptic densities, synaptic and dense
core vesicles and other vesicular structures. This is useful to
understand the cell biology of the neuron (Figure 5C).

The VAST software package is capable of segmenting in
such a way (Kasthuri et al., 2015). In our hands, VAST has
the best performance when handling large datasets like the
entire C. elegans nerve ring (Figure 5D). Manual volumetric
segmentation, however, is very low throughput. Fully automated
segmentation methods have been reported, but they have
yet to perform well with our C. elegans datasets. We took
an alternative, semi-automated approach. In this approach,
membrane probability maps were generated from small training
stacks (Meirovitch et al., 2016), and nodes that were generated
from skeleton tracing were expanded to the calculated membrane
boundary to Q15fill the neurite (Meirovitch et al., in preparation).
This is followed by manual proof-reading in VAST (Figure 5D).

Synapse Annotation
Different fixation protocols can lead to differences in the
morphology of fixed tissues. Therefore, it is important to
adjust criteria for synapse annotation for datasets generated
using different fixation protocols and imaging conditions.
For example, the slow fixation protocol used for generating
the original C. elegans adult wiring datasets was optimized
for cell membrane contrast. Fine intracellular ultrastructure
was less well preserved, and presynaptic dense projections
appear as a dark density close to the membrane, with
hard to discern morphology. This makes chemical synapse
annotation more prone to staining artifacts. The slow fixation
protocol caused shrinkage of neurites, which tore apart weak
adhesions between adjacent neurites. Such a distortion could
complicate the assignment of postsynaptic partners in polyadic
synapses, but highlight gap junctions, which remain intact.
Synapse annotation and connectome assembly were carried out
cautiously and carefully with these caveats in mind (White
et al., 1986). Any reconsideration of these micrographs should
involve careful study of the entire dataset and apply similarly
rigorous criteria to avoid the “false positive” identification of
synapses.

Even with a well-preserved sample that has been fixed using
high-pressure freezing and aligned well into a 3D volume,
synapse annotation requires training, and includes of element of
subjectivity (see below; Figure 7). For a compact nervous system
such as C. elegans, where neuron and synapse numbers are small,
it is even more pertinent to establish stringent criteria for sample
preparation and synapse annotation, and to obtain and compare
multiple datasets from isogenic individuals, so that errors can be
minimized.

Below we describe the criteria used for synapse annotation in
our high-pressure frozen and freeze substituted volumes of the
C. elegans nervous system.
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FIGURE 7 | Examples of synapse annotation with different degrees of subjectivity. (A) Serial sections through a large, confidently annotated polyadic synapse (from
IL1VL to RIPL, RMDDL and body wall muscle BWM-VL01). This synapse spans these three sections, and beyond (not shown). (B) Serial sections through a very
small synapse (from RIS to RIBL and RMDR). The annotation of this synapse is less confident that the one presented in panel (A). (C) Serial sections of a membrane
swelling that is confidently annotated as not-a-synapse. A small density in the membrane of RIBL with sparse vesicles is not a presynaptic specialization. (D) Serial
sections through a synapse showing the occasional subjectivity involved in defining postsynaptic partners. While all annotators agreed RMGL was a postsynaptic
partner of RIGL, whether SAADL should be included as a postsynaptic partner was cause for debate. White arrowheads indicate the membrane of interest. Scale
bars are 1 µm.
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Chemical Synapses
Caenorhabditis elegans presynapses generally consist of a swelling
in the neurite, with a visible electron-dense presynaptic density
attached to the plasma membrane marking the active zone, with a
cloud of vesicles adjacent to the presynaptic density (Figures 6B,
7A). Vesicle clouds often consist of many clear core synaptic
vesicles close to the active zone, and a small number of large,
dense-core vesicles that reside more peripherally. Vesicle clouds
can cover large areas with multiple small presynaptic dense
projections, especially in the nerve ring. If the synapse is small,
cut at an awkward angle, or if there are artifacts covering or
interfering with the putative synapse, assigning whether it is a
synapse or not can sometimes be a bit subjective (Figures 7B,C).
Many synapses are polyadic. Since most synapses in the C. elegans
nervous system do not have visible postsynaptic densities,
postsynaptic partners are assigned based on their proximity to
the presynaptic active zones, which can be a source of subjectivity
(Figure 7D).

To minimize the problem of subjectivity, our datasets are fully
annotated by three independent annotators. Using CATMAID
one can assign confidence scores to synapses, with a score
of 5 indicating a high level of confidence, and a score of 1
indicating very low confidence. The triplicate annotations are
then merged, and every inconsistency between annotators is
flagged for discussion. If agreement is not reached by the three
annotators after debate, an average of the confidence scores
is reported to allow subsequent data users to make their own
judgments.

Gap Junctions
Gap junctions are notoriously difficult to identify in vEM.
There are some morphological criteria that can help identify
some with reasonable certainty. A classic gap junction profile
includes a close, relatively flat area of membrane apposition of
limited extracellular space (∼2 nm) across multiple sections, a
thicker membrane, with a characteristic sharp zippering of the
membranes immediately at the boundaries of the putative gap
junction. These features can be quite clear if cut at the perfect
angle with thin (30–50 nm) sections, but even in well-stained
samples not all gap junctions can be marked unambiguously.
Tomography, which acquires images of the same section at
different tilt angles to generate a high-resolution 3D volume
of the section, helps survey a putative gap junction, but it is
unrealistic to apply such an approach to the entire series of the
nervous system.

We corroborate our gap junction annotation by comparing
patterns across our multiple new datasets and to the original
datasets (White et al., 1976, 1986). The slow chemical fixation
protocol used for the original adult connectome, while distorting
neurite morphology and pulling apart weaker contacts between
neurites, allowed strong membrane connections such as gap
junctions to be particularly well distinguished. Some of the
morphologically identified gap junctions have been functionally
validated (Chalfie et al., 1985; Liu et al., 2017). Comparing new
and old datasets allows us to refine criteria for gap junction
annotation in high-pressure frozen datasets. These criteria are
validated by uncovering recurrent gap junction-like structures

when comparing the same membranes between neuronal classes
across datasets. Because in each sample, the junction between
each neuron pair was sectioned from a different angle, stereotypic
gap junctions can be confirmed in multiple views. Our approach
will likely miss small or sparse gap junctions.

Multiple approaches have been attempted to highlight gap
junctions in EM volumes. CLEM (correlative light and electron
microscopy), where gap junctions are labeled by immunostaining
against one of the C. elegans innexin::GFP fusions, showed
promise (Markert et al., 2016, 2017). This approach requires a
weak fixation that compromises structural preservation, and it
would be difficult to expand this approach to all 25 C. elegans
innexins. We and others are working to develop EM preservation
protocols to improve gap junction annotation.

Neuron Identification
In a large, good quality C. elegans volume, every single cell can
be assigned its unique cell name. Each neuron class has been
described in such superb detail in The Mind of a Worm (White
et al., 1986) that by reading the neuron descriptions while going
through the complete EM series, one can identify neurons one by
one throughout the volume. WormAtlas hosts scanned copies of
the neuron pages from The Mind of a Worm that are accessible
through a drop-down menu in an internet browser (Altun et al.,
2002, 2018). Several features indicate neuron identity: cell body
position, neurite trajectory, stereotypic neurite placement or
morphology and stereotypic connectivity patterns. We found that
this stereotypy holds across postnatal developmental stages for
most neurons, with a few exceptions.

For example, in the adult ventral nerve cord, VC processes
are generally most dorsal, followed by VD, DD, VA, then VB
toward the ventral side. Synapses to body wall muscles come from
VA, VB, VD, and VC class motor neurons. Among them, VD
presynaptic swellings are large, face directly toward the muscle,
most of the time without any neurons as dyadic postsynaptic
partners (Jin et al., 1999; White et al., 1976, 1986; Figure 7A). On
the other hand, VA and VB, form NMJs that consist of smaller
swellings, are often on the dorsal side of the neurite, and almost
always dyadic with DD dendrites, which send spine-like structure
toward the NMJ (White et al., 1976, 1986; Jin et al., 1999; White,
2013; Figures 7B,C).

Neurite trajectory and process placement are used to further
identify neurons. For example, VAs project axons anteriorly
from the soma, whereas VB axons project posteriorly. VDs also
project their axons anteriorly, but they send a dorsal-projecting
commissure at the end of the axon regions. Commissure
trajectory (whether it exits the ventral nerve cord from the left
or right side) and partners in each commissure bundle further
assist cell identification (Figure 8D). For example, VD2 runs in a
left-handed commissure, always bundled with that of DD1, DA1,
and DB2.

These, and other observations, allow one to recognize the
“fingerprints” of motor neuron identity. Similar observations and
strategies apply to the other neuropils in the worm, such as the
dorsal nerve cord, the nerve ring, and the other cords and ganglia
of the worm, as well as across different stages of development.
Some neurons are not born until later in development (Sulston
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FIGURE 8 | NeuronsQ18 can be identified from 3D volumes. Electron micrographs showing snapshots of part of the ventral nerve cord from an animal at the end of the
second larval stage, imaged using SEM at 2 nm/pixel. (A) A VD2 NMJ is pointing laterally toward a muscle arm. This example also “hits” a projection from the VA2
motor neuron, but it is not clear if receptors are present. Some other motor neurons are also labeled, to give a sense of the relative position within the nerve cord.
(B) A VA2 NMJ is pointing more dorsally, releasing onto a muscle arm, a DD1 spine and VD2. (C) A VB2 NMJ is also pointed dorsally, releasing onto muscle, a DD1
spine and VD2. (D) A cartoon of most of the commissure bundles in C. elegans, available on WormAtlas (Altun et al., 2002, 2018) and based on The Mind of a Worm
(White et al., 1986). The positions, handedness and commissure bundle partners are known, and very stereotypic. Bundles of neuron processes are shown as red
cables. The cell bodies are denoted with spheres, and also have stereotypic positions along the body of the worm and relative to each other.

and Horvitz, 1977), but most neurons have stereotypic features
and connectivity across larval stages. A notable exception is the
DD motor neuron class, which exhibits extensive remodeling of
connectivity during development (White et al., 1978).

Assembly of a Wiring Matrix
After obtaining a connectome, we further assess pairwise
connections to gauge confidence in biologically relevant
connections. Connections between two neurons consisting of
many synapses are considered high confidence. A connection is
considered uncertain if it consists of very few synapses. When
few synapses are observed between neurons, we often observe
inconsistency in the existence of the connection across animals.
From comparing multiple datasets that we have acquired for the
C. elegans nerve ring and ventral ganglion, three synapses seem
to be a sensible lower bound on a high confidence connection.
Even so, to minimize variability introduced by annotators, and
assess true biological variability, acquiring connectomes from
multiple animals is advisable.

PERSPECTIVES

The pipeline described above represents only a starting point
for modern high throughput C. elegans vEM. We should expect

rapid and substantial improvement both in terms of throughput
and quality. Future improvements will include automated image
segmentation, synapse annotation and neuron and neurite
identification. This will be facilitated by the generation of
new C. elegans connectomes as training datasets for machine
learning approaches. Incorporating of these improvements will
allow not only rapid reconstruction of connectomes from
multiple animals, but also facilitate targeted reconstruction
of specific segments of the nervous system by computer
vision.

The C. elegans nervous system is compact, allowing precise
correlation of anatomy (connectome) with membrane
physiology (activity and excitability of individual neurons),
sign of synaptic communication (neurotransmitter and
receptor of individual synapses), and behavior. The
delineation of the neurotransmitter type and receptor
complement of each neuron (Serrano-Saiz et al., 2013;
Pereira et al., 2015; Gendrel et al., 2016), combined with
the connectivity, allow for more sophisticated modeling of
information flow through the nervous system. Whole brain
calcium imaging from fixed and behaving animals allows
observation of the activity of functioning neural circuitry
(Schrödel et al., 2013; Prevedel et al., 2014; Kato et al.,
2015; Nguyen et al., 2016; Venkatachalam et al., 2016),
allowing correlation of anatomic and functional connectivity.
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Performing connectomics on animals with genetic mutations that
affect diverse properties of neurons – neuronal fate, synaptic
transmission, cell adhesion and signaling – holds the promise
of identifying genetic and biochemical pathways that determine
connectivity. This system holds a promise to reveal insight on
principles of how a connectome leads to hard-wired and flexible
behaviors (Johnson et al., 1995; Harris-Warrick et al., 1998;
Marder and Bucher, 2007; Agnati et al., 2010).

The field of C. elegans connectomics is at a new beginning.
Modern techniques now allow us to use connectomics to ask
questions about the dynamic and comparative structures of
complete nervous systems. How does a connectome remodel
across development? What sexual dimorphisms are held within
a connectome? How do mutations in genes that establish
the trajectory of neurite growth, the specificity of synapse
partners, and the molecular complement of the plasma
membrane, change a connectome? Does a connectome drift
with age? How much inter-individual variability is there?
Is learning and memory physically manifested within the
connectome? What about the influence of environment?
How are the behavioral differences between morphologically
similar but evolutionarily distinct Caenorhabditis species
represented by the connectome? How does a connectome
evolve?

Finally, volume EM of C. elegans does not only
generate information about the nervous system. Packaged
within the small volume, our volumes of the nervous
system data also capture other tissues – the skin, gut,
musculature, excretory cells, and reproductive system –
each with their own exquisite intracellular ultrastructure. All
datasets will be useful to the much larger community of
biologists.
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