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Abstract 

Cellular lipid storage is regulated by the balance of lipogenesis and lipolysis. The rate-

limiting triglyceride hydrolase ATGL (desnutrin/PNPLA2) is critical for lipolysis. The 

control of ATGL transcription, localization and activation has been intensively studied, 

while regulation of the protein stability of ATGL is much less explored. Here we 

showed that the protein stability of ATGL is regulated by the N-end rule in cultured 

cells and in mice. The N-end rule E3 ligases UBR1 and UBR2 reduce the level of ATGL 

and affect lipid storage. The N-end rule-resistant ATGL(F2A) mutant, in which the N-

terminal phenylalanine (F) of ATGL is substituted by alanine (A), has increased protein 

stability and enhanced lipolysis activity. ATGLF2A/F2A knock-in mice are protected 

against high-fat diet (HFD)-induced obesity, hepatic steatosis and insulin resistance. 

Hepatic knockdown of Ubr1 attenuates HFD-induced hepatic steatosis by enhancing the 

ATGL level. Finally, the protein levels of UBR1 and ATGL are negatively correlated in 

the adipose tissue of obese mice. Our study reveals N-end rule-mediated proteasomal 

regulation of ATGL, a finding which may potentially be beneficial for treatment of 

obesity.
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Introduction 1 

Obesity is a major risk factor for common diseases such as nonalcoholic fatty liver 2 

disease (NAFLD), cardiovascular diseases, type II diabetes, and some cancers (1). The 3 

cause of obesity is complicated, and includes factors such as excessive food intake, lack 4 

of physical activity and genetic susceptibility; however, in general, the main reason is 5 

excessive lipid storage (2). At the cellular level, the balance of lipogenesis and lipolysis 6 

largely determines the lipid storage level. Reduced lipogenesis or elevated lipolysis has 7 

often been reported to be protective against the development of obesity and obesity-8 

associated diseases (3; 4). 9 

ATGL is a rate-limiting executor of lipolysis and its level or activity has been 10 

associated with various metabolic conditions (5-10). Loss-of-function mutations in 11 

human ATGL cause neutral lipid storage disease with myopathy (NLSDM) (11). Atgl-12 

deficient mice accumulate large amounts of lipid in the heart, which causes cardiac 13 

dysfunction and premature death (12). Interestingly, adipose tissue-specific 14 

overexpression or deletion of Atgl appears to be beneficial. Mice with adipose ATGL 15 

overexpression were protected from diet-induced obesity and showed improved glucose 16 

homeostasis (13). Adipose-specific Atgl knockout mice had slightly increased body 17 

weight, but exhibited improved glucose tolerance and hepatic insulin sensitivity (14). 18 

Pharmacological inhibition of ATGL by Atglistatin has beneficial effects on high-fat 19 

diet (HFD)-induced obesity and hepatic steatosis (15). Therefore, the temporal and 20 

spatial regulation of ATGL level or activity appear to be critical for determining the 21 

physiological outcome. 22 

ATGL protein is expressed at low levels in non-adipose tissues, but is highly 23 

expressed in white and brown adipose tissue (16). Previous studies revealed that ATGL 24 

expression/activity can be regulated transcriptionally and post-transcriptionally (17-21). 25 

Numerous binding partners of ATGL have also been identified. ABHD5 (α/β hydrolase 26 
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domain containing 5, also named CGI58) is a classic cofactor that directly binds to and 27 

activates ATGL (19). On the other hand, ATGL activity can be inhibited by G0S2, 28 

which physically interacts with the N-terminal patatin domain of ATGL (20). In 29 

addition, other ATGL binding partners, such as UBXD8, PEDF, COP1, PEX2 and the 30 

Arf1 exchange factor GBF1, may be responsible for modulating the trafficking, 31 

localization or protein level of ATGL (18; 22-25). Despite significant advances in our 32 

knowledge of the control of ATGL transcription, localization and activation, the 33 

complete set of in vivo regulatory events for ATGL is far from clear. 34 

In this study, we found that ATGL protein level is modulated by the N-end rule 35 

pathway E3 ligases UBR1 and UBR2. The N-end rule pathway is a proteolytic system in 36 

which certain N-terminal residues of short-lived proteins are recognized by a class of 37 

ubiquitin ligases to achieve proteasome-mediated degradation (26). We demonstrated 38 

that mice with a knock-in of the N-end rule-resistant mutation ATGL(F2A) (designated 39 

as AtglF2A/F2A) exhibit elevated lipolysis and are resistant to HFD-induced obesity and 40 

hepatic steatosis. 41 

 42 

Research design and methods 43 

Mice 44 

AtglF2A/F2A 
knock-in mice on the C57BL/6 background were generated by Beijing 45 

Biocytogen Co., Ltd. All mice were housed in environmentally controlled conditions 46 

(temperature 22℃, 12:12 LD cycle lights on at 0730h). Male mice were used for all 47 

experiments. For HFD feeding, 8-week-old Atgl++ and AtglF2A/F2A mice were housed 48 

individually and fed an HFD with 60% kcal fat (Research Diets, D12492, New 49 

Brunswick) for 16 weeks. Glucose tolerance test (GTT) and insulin sensitivity test (ITT) 50 

were performed after 16-weeks of HFD feeding. For hepatic knockdown of Ubr1, 8-51 
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week-old Atgl++ and AtglF2A/F2A mice were injected intravenously (i.v.) with 31011 52 

genomic copies (GC) of AAV-TBG-shCon or AAV-TBG-shUbr1 AAVs, followed by 53 

feeding with an HFD with 60% kcal fat (Research Diets, D12492) for 8 weeks. All mice 54 

were fasted for 5-6 hours prior to euthanasia, except when otherwise indicated. All 55 

animal care and treatment procedures were approved by the Institutional Animal Care 56 

and Use Committee. 57 

 58 

Cells and cell culture 59 

HepG2 cells (#HB-8065), HeLa cells (#CCL-2) and 3T3L1 preadipocytes (#CL-173) 60 

were purchased from ATCC (Manassas, VA). For transfection, a total of 100 pmol 61 

siRNA oligonucleotides were transfected into cells in 6-well plates using Lipofectamine 62 

3000 (Invitrogen, Waltham). 63 

 64 

Adenoviruses and adeno-associated viruses 65 

The coding sequences of human ATGL and the ATGL(F2A) mutant were amplified by 66 

PCR and cloned into the adenovirus vector pADV-mCMV-MCS-3flag. Adenovirus 67 

was produced by transfection in 293A cells and purified via the cesium chloride gradient 68 

centrifugation method. Adeno-associated virus (AAV) expressing shRNA against mouse 69 

Ubr1 was generated using the AAV vector pAAV-TBG-MCS-3Flag-WPRE. The target 70 

sequence is 5’-CCCGTAAGATCCTTCATGA -3’. AAV virus was produced by 71 

transfection into 293T cells and purified via discontinuous iodixanol gradient (27). Viral 72 

genome titers were determined by qRT-PCR. 73 

 74 

Statistics 75 

All data are shown as mean ± SEM, except that in Fig. 1D, 2D and 3H, data are shown 76 
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as violin plots with median. Statistical analyses were performed with the 2-tailed, 77 

unpaired Student’s t test or ANOVA with post-hoc Tukey’s multiple comparisons test 78 

using GraphPad. 79 

 80 

Data and Resource 81 

Datasets and resources are available upon request. 82 

 83 

Results 84 

Proteasome activity is positively correlated with lipid storage in worm, fly and 85 

mammalian cells. 86 

In order to find new regulators of neutral lipid storage, we previously performed an 87 

RNAi screen in C. elegans (28). We found that two proteasome component genes, pas-5 88 

and pbs-4, caused a decreased lipid storage phenotype when knocked down (Fig. 1A, 89 

Supplementary Fig. 1A and Supplementary Table S1). We then screened other 90 

proteasome components through RNAi. Knockdown of nearly all of the core 91 

components and a few regulatory components caused a similar reduced lipid storage 92 

phenotype (Supplementary Table S1). This suggests a general requirement for the 93 

proteasome for proper lipid storage. Meanwhile, in a genetic screen in Drosophila (29), 94 

we found that overexpression of the proteasome regulatory subunit Rpn2 dramatically 95 

increases lipid storage in Drosophila 3rd instar salivary gland (Supplementary Fig. 1B). 96 

These findings suggest that proteasome activity promotes lipid storage in worm and fly. 97 

We examined the effect of the proteasome inhibitor MG132 on lipid storage in 98 

worms and mammalian cells. Compared to the control, MG132 treatment reduced the fat 99 

content in worms in a dose-dependent manner (Fig. 1B). Similarly, the size and the 100 

number of lipid droplets, as well as triglyceride levels, were all decreased in MG132-101 

treated HepG2 cells (Fig. 1C-F). Together, our results indicate that proteasome activity 102 
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positively correlates with lipid storage in worm, fly and mammalian cells. 103 

 104 

The ATGL level is regulated by proteasome activity. 105 

We next explored the mechanism underlying the relationship between inhibition of 106 

proteasome activity and decreased lipid storage. The proteasome may be involved in the 107 

degradation of a negative regulator of lipogenesis or a positive regulator of lipolysis. 108 

Previous work showed that the level of ATGL is increased by proteasome inhibitor 109 

treatment (18). Therefore, we analyzed the link between proteasome activity, ATGL 110 

level, and lipid storage. MG132 treatment greatly increased the endogenous ATGL level 111 

in both normal and OA-loaded cells (Fig. 1G). Interestingly, OA treatment also 112 

enhanced the protein levels of ATGL compared to the control (Fig. 1G). To test whether 113 

elevated ATGL is responsible for the MG132-mediated inhibition of lipid storage in 114 

OA-loaded cells, we knocked down ATGL in HepG2 cells. The reduced lipid storage 115 

caused by MG132 treatment was significantly suppressed by knockdown of ATGL (Fig. 116 

1C-F, and supplementary Fig. 1C). 117 

In agreement with previous finding (18; 24), the level of ubiquitinylated ATGL was 118 

increased upon MG132 treatment (Fig. 1H). In contrast to MG132, treatment with 119 

Bafilomycin A1 (BFA1), a lysosome H+-ATPase inhibitor, did not affect endogenous 120 

ATGL levels in cells with or without OA treatment (Fig. 1I). This indicates that ATGL 121 

is mainly degraded through the ubiquitin-proteasome pathway. Overall, these data 122 

suggest that proteasome activity regulates lipid storage, at least partially, through ATGL 123 

degradation. 124 

 125 

The N-end rule pathway ubiquitin ligases UBR1 and UBR2 affect ATGL stability 126 

and lipid storage in cells. 127 

We next sought to identify the E3 ligase(s) that might be responsible for ATGL 128 
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ubiquitination and degradation. The candidate E3 ligase should fulfill at least two 129 

criteria: first, when mutated, it should have a lipid metabolism-related phenotype in vivo; 130 

and second, it should affect ATGL ubiquitination. Based on these two criteria, we 131 

examined the potential involvement of the N-end rule E3 ligase UBR1 (30). UBR is as 132 

an important component of the N-end rule pathway, and it recognizes and binds to 133 

proteins bearing destabilizing N-terminal residues, leading to their ubiquitination and 134 

subsequent degradation (31). Importantly, ATGL bears a destabilizing N-end residue, 135 

phenylalanine (F), and this residue is conserved in vertebrates (Fig. 2A). In addition, a 136 

previous report has shown that Ubr1−/− mice exhibit reduced adiposity (30). 137 

We then examined whether the stability of ATGL is regulated by UBR1. UBR1 138 

RNAi increased the ATGL protein level compared to the negative control (Fig. 2B). 139 

Similarly, the endogenous ATGL protein level was increased in HeLa cells with 140 

knockdown of UBR2, which belongs to UBR protein family and plays redundant roles 141 

(31), and was greatly increased in UBR1/UBR2 double RNAi cells compared to the 142 

control (Fig. 2B). Next, we tested whether UBR1 and UBR2 also affect ATGL-mediated 143 

lipolysis. ATGL RNAi led to increased lipid storage (Fig. 2C-F). In contrast, 144 

knockdown of UBR1 or UBR2 reduced the size and number of lipid droplets and 145 

lowered the level of triglyceride accumulation in ATGL RNAi HepG2 cells (Fig. 2C-F). 146 

This indicates that UBR1 and UBR2 affect ATGL-regulated lipid storage. 147 

We also examined the physical interaction between the proteins. Both UBR1 and 148 

UBR2 were associated with ATGL-Flag (Fig. 2G-H). We further determined the lysine 149 

residue(s) of ATGL that are ubiquitinated by UBR. Consistent with previous findings 150 

that the polyubiquitination signal of ATGL is located at the N-terminus of the protein 151 

(18; 24), the ubiquitination signal was detected in Flag-tagged full-length ATGL and a 152 

Flag-tagged N-terminal fragment (amino acids 1-160) (Fig. 2I and Supplementary Fig. 153 
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1D). Notably, the ubiquitination signal of both full-length and N-terminal ATGL was 154 

considerably decreased upon UBR1 knockdown (Fig. 2I and Supplementary Fig. 1D). 155 

We searched for UBR1-dependent ubiquitination sites in the N-terminal patatin domain 156 

of ATGL. There are six lysine (K) residues in that region and UBR1 knockdown 157 

increased the ATGL protein level when lysine was mutated to arginine (R) at positions 158 

68, 74, 78, 92, or 135 (Supplementary Fig. 1E-G). However, the protein and 159 

polyubiquitination levels of ATGL(K100R) did not respond to UBR1 knockdown (Fig. 160 

2I and Supplementary Fig. 1G), suggesting that K100 is an UBR1-dependent 161 

ubiquitination site of ATGL. 162 

Since OA treatment also increased ATGL protein levels (Fig. 1G), we next tested 163 

whether OA treatment affected the polyubiquitination levels of ATGL. The 164 

polyubiquitination levels of ATGL were slightly increased by treatment with OA or 165 

lipolytic inducer (Fig. 2J). Moreover, knockdown of UBR1 increased ATGL protein 166 

stability with or without OA treatment. Similar patterns were observed following the 167 

knockdown of COP1 and PEX2, two E3 ligases for ATGL, except that knockdown of 168 

PEX2 failed to decrease the polyubiquitination level of ATGL upon treatment with 169 

lipolytic inducer (Supplementary Fig. 2A and B). This may be because lipolysis 170 

enhances the protein level of PEX2 (24). In line with this, neither OA treatment nor 171 

knockdown of E3 ligases for ATGL significantly affected the polyubiquitination levels 172 

of ATGL(K100R) (Supplementary Fig. 2C and D), which provides further evidence that 173 

K100 is important for its protein stability. Collectively, these results indicate that the 174 

stability of ATGL can be regulated by UBR1 and UBR2. 175 

 176 

The N-end rule residue affects the stability of ATGL. 177 

To investigate whether the N-terminal phenylalanine residue of ATGL is important for 178 

its stability, we compared the stability of wild-type ATGL in HeLa cells with two ATGL 179 
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mutants, ATGL(F2A) and ATGL(F2V), in which the N-terminal destabilizing residue 180 

phenylalanine (F) of ATGL was mutated to the stabilizing residue alanine (A) or valine 181 

(V). Western blot results showed that the ATGL(F2A) and ATGL(F2V) mutants are more 182 

stable than ATGL(WT) (Fig. 3A-B). We then explored the contribution of the 183 

destabilizing phenylalanine residue to the ubiquitination of ATGL. The level of 184 

ubiquitinated ATGL(F2A) was lower than that of ATGL(WT) in the presence of MG132 185 

(Fig. 3C). Furthermore, knockdown of UBR1 and UBR2 enhanced the level of 186 

ATGL(WT) protein but not the ATGL(F2A) mutant (Fig. 3D). This suggests that the N-187 

terminal phenylalanine residue of ATGL is important for UBR1- and UBR2-regulated 188 

protein stability. 189 

ATGL is highly expressed in adipocytes and ATGL-mediated lipolysis is essential 190 

for providing free fatty acid (FFA) for energy production during fasting (16). We then 191 

tested whether the ATGL(F2A) mutant affects lipolysis and lipid storage in 3T3L1 192 

adipocytes. In basal-state 3T3L1 adipocytes, levels of lipolysis, assessed by FFA and 193 

glycerol release, were comparable in cells expressing ATGL(WT) and ATGL(F2A), 194 

except that glycerol release was increased in ATGL(F2A) cells at 4 hours (Fig. 3E and 195 

F). Stimulation of lipolysis with isoproterenol led to increased FFA and glycerol release, 196 

and this enhancement was greater in ATGL(F2A) cells compared to ATGL(WT) cells 197 

(Fig. 3E and F and Supplementary Fig. 2E). The N-end rule residue substitution did not 198 

affect the binding of ATGL with CGI58, an activator of ATGL, or with G0S2, an 199 

inhibitor of ATGL (Supplementary Fig. 2F and G). Accordingly, lipid droplet size and 200 

number, and triglyceride accumulation were decreased in stimulated ATGL(F2A)-201 

expressing cells compared to ATGL(WT)-expressing cells (Fig. 3G-J). In sum, the N-202 

end rule residue affects the stability of ATGL and the level of ATGL-mediated lipolysis. 203 

 204 

ATGL(F2A) knock-in mice have elevated lipolysis and FAO in adipose tissue. 205 
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We next sought to reveal the effect of stabilized ATGL in mice. We generated mice with 206 

knock-in of the ATGL(F2A) mutation, designated as AtglF2A/F2A (Supplementary Fig. 3A 207 

and B). Supplementary Table S2 shows the metabolic profiles of Atgl++
 
and AtglF2A/F2A 208 

mice fed on a chow diet. 209 

In gonadal white adipose tissue (WAT) and brown adipose tissue (BAT), the ATGL 210 

level was increased by 3-fold and 1.5-fold, respectively, in AtglF2A/F2A 
mice compared to 211 

control mice (Fig. 4A and B). Similar to adipose tissue, the ATGL protein level was 212 

elevated in muscle from AtglF2A/F2A mice (Supplementary Fig. 3C). Along with the 213 

increased protein level, ATGL(F2A) caused enhanced lipolysis ex vivo (Fig. 4C and D). 214 

When mice were fed an HFD for 8 weeks, ATGL(F2A) led to enhanced FFA release 215 

from labeled triglyceride compared to control mice (Fig. 4E). 216 

Previous studies reported that overexpression of ATGL leads to activation of 217 

PPARα signaling and fatty acid β-oxidation (FAO) (32; 33). Similarly, expression levels 218 

of genes related to PPARα signaling and FAO were higher in the gonadal WAT from the 219 

HFD-fed AtglF2A/F2A 
mice compared to the control (Fig. 4F). Expression levels of genes 220 

involved in lipogenesis and lipolysis were not significantly affected (Fig. 4F). Moreover, 221 

direct measurement of FAO using [3H]-palmitate showed that FAO was enhanced in the 222 

WAT of HFD-fed AtglF2A/F2A 
mice (Fig. 4G). The development of obesity is associated 223 

with stereotypical changes in adipose tissue expression of inflammatory genes. We then 224 

examined the adipose inflammation in HFD-fed mice. The adipose inflammation was 225 

not significantly affected in HFD-fed AtglF2A/F2A 
mice (Supplementary Fig. 3D). Overall, 226 

these data suggest that AtglF2A/F2A mice have increased levels of ATGL protein and 227 

triglyceride hydrolase activity in adipose tissue. 228 

 229 

AtglF2A/F2A mice are resistant to diet-induced obesity and hepatic steatosis. 230 
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Next, we examined the effect of ATGL(F2A) on the development of obesity. Atgl++
 
and 231 

AtglF2A/F2A mice were pair-fed an HFD for 16 weeks starting from 8 weeks of age. We 232 

used pair-feeding to ensure similar food intake by these two groups (Supplementary Fig. 233 

3E), because it has been reported that loss of Atgl or pharmacological ATGL inhibition 234 

affects food intake (15; 34). The plasma parameters are shown in Supplementary Table 235 

S3. 236 

The body weight gain of AtglF2A/F2A mice was less than that of Atgl++
 
mice (Fig. 237 

5A). Glucose tolerance and insulin sensitivity were improved in HFD-fed AtglF2A/F2A 
238 

mice compared to Atgl++
 
mice (Fig. 5B-D). To determine the effect of ATGL(F2A) on 239 

energy balance, we measured oxygen consumption (O2), carbon dioxide (CO2) 240 

production and energy expenditure. Their levels were higher in HFD-fed AtglF2A/F2A 
241 

mice compared to Atgl++
 
mice (Fig. 5E and F, Supplementary Fig. 3F and G). 242 

The attenuated body weight gain in HFD-fed AtglF2A/F2A mice led us to examine 243 

adiposity. The liver weight and the weights of WAT and BAT were decreased in 244 

AtglF2A/F2A mice compared to Atgl++
 
mice when fed an HFD (Fig. 5G, and 245 

Supplementary Fig. 3H). The sizes of adipocytes in WAT and BAT were also decreased 246 

in adipose tissue sections from HFD-fed AtglF2A/F2A mice compared to control mice (Fig. 247 

5H-J). 248 

The reduced liver weight in HFD-fed AtglF2A/F2A mice led us to further analyze the 249 

effect of ATGL(F2A) in liver. Hepatic triglyceride and total cholesterol levels, and 250 

hepatic lipid droplet accumulation were significantly decreased in HFD-fed AtglF2A/F2A 251 

mice compared to Atgl++
 
mice (Fig. 5K and L). The ALT level, which indicates liver 252 

damage, was decreased in HFD-fed AtglF2A/F2A mice compared to Atgl++
 
mice (Fig. 5M). 253 

ATGL protein levels were increased in the liver of AtglF2A/F2A mice compared to control 254 

mice (Supplementary Fig. 3I). To further determine whether reduced lipid accumulation 255 
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in the liver of AtglF2A/F2A mice was attributable to enhanced lipid degradation, we 256 

measured the FAO level. Expression levels of genes involved in FAO and fatty acid 257 

transport were significantly increased (Fig. 5N). The FAO level was significantly 258 

enhanced in the liver of HFD-fed AtglF2A/F2A mice compared to control (Fig. 5O). Taken 259 

together, these results suggest that AtglF2A/F2A mice, which carry a stabilizing N-terminal 260 

amino acid substitution, are resistant to HFD-induced obesity and hepatic steatosis. 261 

 262 

Hepatic knockdown of Ubr1 suppresses HFD-induced fatty liver. 263 

We then examined the physiological effect of UBR1-mediated ATGL degradation in 264 

mice. We knocked down Ubr-1 (AAV-TBG-shUbr1) in the liver of Atgl++
 
or AtglF2A/F2A 265 

mice. The TBG (thyroxine binding globulin) promoter ensures gene knockdown in the 266 

liver. Control animals received AAV-TBG-shCon. Hepatic knockdown of Ubr1 did not 267 

affect hepatic triglyceride levels in fed or fasted mice on a chow diet (Supplementary 268 

Fig. 4A). We also fed the animals with an HFD for 8 weeks. As expected, HFD-fed 269 

AtglF2A/F2A mice showed attenuated body weight gain, less hepatic lipid accumulation, 270 

and decreased plasma ALT levels compared to HFD-fed Atgl++
 
mice (Fig. 6A-C and 271 

Supplementary Fig. 4B). These beneficial effects were not affected by hepatic 272 

knockdown of Ubr1 in HFD-fed AtglF2A/F2A mice (Fig. 6A-C and Supplementary Fig. 273 

4B), which suggests that UBR1-mediated ATGL degradation is blunted in AtglF2A/F2A 274 

mice. Nevertheless, hepatic knockdown of Ubr1 caused reductions in hepatic lipid 275 

accumulation and plasma ALT levels in HFD-fed Atgl++
 
mice (Fig. 6A-C and 276 

Supplementary Fig. 4B). 277 

We then tested the energy balance and glucose homeostasis in HFD-fed Atgl++
 
and 278 

AtglF2A/F2A mice with or without knockdown of hepatic Ubr1. The VO2, VCO2 and 279 

energy expenditure were significantly enhanced in AtglF2A/F2A mice compared to Atgl++
 

280 
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mice (Supplementary Fig. 4C-E). Knockdown of Ubr1 did not affect their levels 281 

irrespective of genotypes (Supplementary Fig. 4C-E). In line with previous findings, 282 

HFD-fed AtglF2A/F2A mice showed improved glucose homeostasis and insulin sensitivity 283 

compared to Atgl++
 
mice (Fig. 6D-F, Supplementary Fig. 4F). Although knockdown of 284 

Ubr1 improved glucose homeostasis in AAV-TBG-shUbr1-treated Atgl++
 
mice 285 

compared to AAV-TBG-shCon treated Atgl++
 
mice, it had no effects on glucose 286 

homeostasis in AtglF2A/F2A mice (Fig. 6D-F and Supplementary Fig. 4F). To examine the 287 

activity of the insulin pathway, HFD-fed Atgl++
 
and AtglF2A/F2A mice were injected with 288 

1 U/kg insulin intraperitoneally. p-AKT(Ser 473) and p-AKT(Thr 308) levels were 289 

enhanced in the liver of AtglF2A/F2A mice compared to Atgl++
 
mice (Fig. 6G). 290 

Importantly, knockdown of hepatic Ubr1 did not affect the activity of the insulin 291 

pathway in the liver of AtglF2A/F2A mice (Fig. 6G). Moreover, knockdown of hepatic 292 

Ubr1 did not affect the activity of the insulin pathway in the muscle and WAT in both 293 

genotypes (Supplementary Fig. G-H). Taken together, these data suggest that the 294 

beneficial effects of the AtglF2A mutation on HFD-induced hepatic steatosis and glucose 295 

homeostasis in mice are not affected by knockdown of hepatic Ubr1. 296 

Analysis of hepatic gene expression levels showed that Ubr1 deficiency 297 

downregulated the expression of Pparg and its target Fabp4 in Atgl++
 
mice, but this 298 

effect was blunted in AtglF2A/F2A mice (Fig. 6H). A similar pattern was shown by other 299 

genes involved in lipogenesis (Supplementary Fig. 4I). The expression levels of genes 300 

involved in FAO and lipolysis were enhanced in AtglF2A/F2A mice compared to Atgl++
 

301 

mice (Fig. 6H and Supplementary Fig. 4I). Knockdown of Ubr1 also increased the 302 

expression levels of FAO genes in Atgl++
 
mice, but it caused no further upregulation of 303 

these genes in AtglF2A/F2A mice (Fig. 6H and Supplementary Fig. 4I). Next, we tested 304 

whether UBR1 regulates ATGL levels in vivo. ATGL protein levels were elevated by 305 
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knockdown of Ubr1 in Atgl++
 
mice, and were not affected by knockdown of Ubr1 in 306 

AtglF2A/F2A mice (Fig. 6I). Accordingly, the polyubiquitination levels of ATGL were 307 

lowered by knockdown of hepatic Ubr1 in Atgl++
 
mice (Fig. 6J). PNPLA3 and 308 

PNPLA4, which are PNPLA family members, also contain N-terminal destabilized 309 

residues. PNPLA4 but not PNPLA3 was regulated by UBR1 in HeLa cells 310 

(Supplementary Fig. 4J-K). Together, these data suggest that in the HFD condition, 311 

hepatic knockdown of Ubr1 reduces lipogenesis and increases FAO. Moreover, the 312 

phenotypic similarity of AtglF2A/F2A mice with or without Ubr1 knockdown indicates that 313 

the N-end rule-mediated degradation of ATGL by UBR1 occurs in vivo. 314 

We further examined the correlation between UBR1 and ATGL levels in obese 315 

mice. Consistent with previous reports, ATGL protein levels were downregulated in 316 

ob/ob mice. Interestingly, UBR1 levels were upregulated in ob/ob mice, which suggests 317 

a negative correlation between UBR1 and ATGL levels (Fig. 6K). Together, these 318 

results demonstrate that the N-end rule-mediated proteasomal degradation of ATGL 319 

regulates hepatic lipid metabolism and insulin sensitivity. 320 

 321 

Discussion 322 

In this study, we found that ATGL, which possesses a typical destabilizing N-terminal 323 

residue, is regulated through the N-end rule pathway. Knockdown of the E3 ligases 324 

UBR1 and UBR2, or treatment with a proteasome inhibitor, elevates the ATGL level and 325 

reduces lipid storage. Importantly, stabilized ATGL (ATGL(F2A)) has beneficial effects 326 

on HFD-induced obesity and associated hepatic steatosis in mice. 327 

 328 

The N-end rule UBR ligase regulates lipid storage through ATGL. 329 

Based on our results and previous findings (18; 24), inhibition of proteasome activity or 330 
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RNAi of proteasome components results in reduced lipid storage in C. elegans, 331 

Drosophila and cultured mammalian cells. The proteasomal regulation of lipid storage 332 

occurs at least partially through ATGL degradation. Previous studies on ATGL protein 333 

levels used N-terminal tagged ATGL, thus possibly masking the N-end rule regulation 334 

of this protein (18; 25). The N-end rule regulation of ATGL is apparently not the only 335 

mechanism that regulates ubiquitination or degradation of ATGL because the 336 

ATGL(F2A) protein can still be ubiquitinated (Fig. 3C). E3 ubiquitin ligase COP1 and 337 

PEX2 also target ATGL for proteasomal degradation (18; 24). 338 

Our study showed that knockdown of UBR or treatment with proteasome inhibitor 339 

can reduce lipid storage in the absence of ATGL in OA-loaded HepG2 cells (Fig. 1C-F, 340 

Fig. 2C-F). This suggests that other factors involved in lipolysis or lipogenesis can also 341 

be involved in UBR1- or proteasome inhibitor-mediated lipid metabolism. In fact, 342 

UBR1 has been shown to degrade lipid droplet proteins in yeast (35). A recent study 343 

identified PLIN2 as a substrate of UBR1 in mice (36). This work also showed that liver-344 

specific knockdown of both Ubr1 and Ubr2 led to hepatic steatosis in mice fed with an 345 

HFD for only 2 weeks. The discrepancy may be due to the different length of HFD 346 

treatment. We used 8-week HFD feeding and the hepatic steatosis was prominent in 347 

wild-type mice. 348 

 349 

Beneficial effects of AtglF2A/F2A. 350 

The AtglF2A/F2A mice reported here presumably represent a whole-body gain of function 351 

of ATGL. These mice also provide us with an opportunity to study the relationship 352 

between ATGL protein stability and organismal physiological function. AtglF2A/F2A mice 353 

show improved GTT and ITT results, elevated energy expenditure when fed an HFD, 354 

and resistance to HFD-induced obesity and hepatic steatosis. These beneficial effects 355 

appear similar to those in G0S2-/- and adipose-specific ATGL overexpression (ap2-356 
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desnutrin) mice (13; 37). The common features among these mouse models are elevated 357 

lipolysis in adipose tissue and reduced triglyceride accumulation in liver upon HFD 358 

feeding. 359 

The elevated flux of fatty acids from adipose tissue can result in triglyceride 360 

accumulation in other peripheral tissues, such as liver. The decreased triglyceride 361 

accumulation in the liver in HFD-fed AtglF2A/F2A 
mice may be due to decreased FFA 362 

release from adipose tissue or increased triglyceride degradation in liver. Although the 363 

ATGL level is apparently enhanced in the adipose tissue of AtglF2A/F2A mice, the change 364 

of plasma FFA level is modest upon HFD feeding (Fig. 4A and Supplementary Table 365 

S3). The enhanced FAO and PPARα signaling in the adipose tissue of AtglF2A/F2A mice 366 

may dampen the FFA release from adipose tissue (Fig. 4F-G). Similarly, plasma FFA 367 

levels were only slightly higher in ap2-desnutrin mice compared to control mice, which 368 

was in part due to elevated FAO within adipose tissue (13). On the other hand, elevated 369 

hepatic ATGL levels and enhanced FAO in the liver of AtglF2A/F2A mice may account for 370 

attenuated HFD-induced hepatic steatosis. In addition, enhanced energy expenditure, 371 

improved insulin sensitivity and attenuated HFD-induced body weight gain may also 372 

contribute to the beneficial effect in the liver. 373 

Glucose tolerance and insulin sensitivity are improved in HFD-fed AtglF2A/F2A mice. 374 

It has been reported that lipotoxicity is a causal factor for insulin resistance. It is 375 

plausible that reduced lipid accumulation in liver and decreased adiposity relieve the 376 

burden of HFD-induced lipid overload, thus improving glucose tolerance and insulin 377 

sensitivity. In line with that, both G0S2-/- and ap2-desnutrin mice showed improved 378 

glucose homeostasis upon HFD feeding. Notably, the beneficial effect in G0S2-/- and 379 

AtglF2A/F2A mice results from the action of ATGL in both liver and adipose tissue, while 380 

the beneficial effect in ap2-desnutrin mice is predominantly due to the action of ATGL 381 

in adipose tissue. Interestingly, knockdown of hepatic Ubr1 improved the activity of the 382 
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insulin pathway (Fig. 6D-F). UBR1 may directly regulate components of the insulin 383 

signaling pathway. Alternatively, it may regulate hepatic lipids, such as DAG or 384 

ceramide, which in turn affect hepatic insulin signaling. 385 

 386 

Both loss of function and gain of function of ATGL can yield beneficial 387 

physiological outcomes. 388 

ATGL apparently has dual effects on metabolism and physiology. Tissue-specific 389 

knockout or overexpression of ATGL appears to have beneficial effects in mice (10; 13; 390 

14; 38; 39). The same conclusion can be extended to humans. On one hand, loss of 391 

ATGL results in NLSDM with life-threating myopathy (11). On the other hand, gain of 392 

ATGL function in patients with a C-terminal mutation in PLIN1 is associated with a 393 

dominant partial lipodystrophy with severe dyslipidemia, and insulin-resistance (40). 394 

We cannot rule out the possibility that the deleterious effects in patients with the PLIN1 395 

C-terminal truncation could be caused by a combination of both gain of function of 396 

ATGL and partial loss of function of PLIN1. Nevertheless, these results indicate that 397 

maintaining a suitable level of ATGL in vivo appears to be essential for sustaining 398 

healthy physiological conditions in humans. In summary, our findings suggest that the 399 

level and the site of ATGL up-regulation are probably critical to determining the 400 

outcomes of ATGL manipulation. 401 
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 549 

Figure legends 550 

Figure 1. ATGL is degraded through the ubiquitin-proteasome system. 551 

(A) BODIPY staining for lipid droplets in C. elegans treated by pas-5 RNAi compared 552 

to the N2 control. Scale bar represents 40 μm. (B) Oil Red O staining for lipid droplets 553 
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in C. elegans treated with the indicated concentration of MG132 for 48 hours. Scale bar 554 

represents 40 μm. (C) BODIPY staining for lipid droplets in HepG2 cells transfected with 555 

siRNA control or siATGL overnight, then treated with 300 µM oleic acid (OA) with or without 556 

60 µM MG132 for 24 hours. Scale bar represents 25 μm. (D) Quantifications of lipid 557 

droplet sizes in C. N=300 lipid droplets per group. (E) Quantifications of the number of 558 

lipid droplets in C. N=50 cells per group. (F) Quantifications of TAG levels in C. N=3 per 559 

group. (G) Western blot analysis of lysates of HeLa cells treated with or without OA, 560 

followed by MG132 treatment for the indicated time. (H) Western blot analysis of 561 

lysates of HeLa cells transfected with Mock or ATGL-Flag, and treated with MG132 at 562 

the indicated concentration. (I) Western blot analysis of lysates of HeLa cells treated 563 

with the lysosome inhibitor BFA1 under both normal and OA-loaded conditions. All data 564 

are presented as mean±SEM, except for the violin plots in D in which the horizontal lines 565 

indicate the median. *p < 0.05, **p < 0.01, ****p < 0.0001. 566 

 567 

Figure 2. The N-end rule pathway ubiquitin ligases UBR1 and UBR2 regulate 568 

ATGL stability and lipid storage in cultured cells. 569 

(A) The conserved destabilizing phenylalanine (F) residue at the N-terminus of ATGL 570 

(H.s., human; R.n., rat; M.m., mouse; B.t., cattle; G.g., chicken). (B) Western blot 571 

analysis of proteins in HeLa cells transfected with control siRNA, siUBR1, siUBR2 or 572 

both for 48 hours. (C) BODIPY staining for lipid droplets in HepG2 cells transfected with 573 

control siRNA, siUBR1, siUBR2, siATGL, siUBR1+siATGL, and siUBR2+siATGL, and 574 

treated with 100 µM OA overnight. Scale bar represents 25 µm. (D) Quantifications of 575 

lipid droplet sizes in C. N=300 lipid droplets per group. (E) Quantifications of the number 576 

of lipid droplets in C. N=50 cells per group. (F) Quantifications of triglyceride (TAG) 577 

levels in C. N=3 per group. (G, H) Immunoprecipitation with anti-Flag antibody and 578 

western blot analysis for UBR1 (G), UBR2 (H) and ATGL in HeLa cells transfected with 579 
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control vector or ATGL-Flag. (I) Immunoprecipitation with anti-Flag antibody and 580 

western blot analysis for ubiquitin in HeLa cells transfected with the indicated siRNA and 581 

ATGL-Flag or ATGL(K100R)-Flag vector, followed by treatment with MG132. (J) 582 

Immunoprecipitation with anti-Flag antibody and western blot analysis for ubiquitin in 583 

HeLa cells transfected with the indicated siRNA and ATGL-Flag vector, followed by 584 

treatment with or without 100 µM OA for 16 hours or with 100 µM OA for 16 hours 585 

followed by ISO (0.25 mM IBMX/1 µM isoproterenol) for 8 hours. All data are presented 586 

as mean±SEM, except for D (violin plots) in which the horizontal lines indicate the median. 587 

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 588 

 589 

Figure 3. The N-end rule residue affects the stability of ATGL and ATGL-mediated 590 

lipolysis. 591 

(A) Western blot analysis of proteins in HeLa cells transfected with ATGL(WT)-Flag, 592 

ATGL(F2A)-Flag or ATGL(F2V)-Flag and treated with 10 µg/mL cycloheximide for 593 

the indicated times. (B) Quantification of relative protein levels in (A). (C) 594 

Immunoprecipitation with anti-Flag antibody and western blot analysis for ubiquitin and 595 

ATGL-Flag in HeLa cells transfected with ATGL(WT)-Flag and ATGL(F2A)-Flag and 596 

treated with or without MG132. (D) Western blot analysis of proteins in HeLa cells 597 

stably overexpressing ATGL-Flag or ATGL(F2A)-Flag and transfected with control 598 

siRNA or siUBR1+siUBR2 for 48 hours. (E, F) Release of FFA (E) and glycerol (F) 599 

from differentiated 3T3L1 adipocytes infected with equal amounts of Ad-ATGL-Flag or 600 

Ad-ATGL(F2A)-Flag and treated with or without 10 µM isoproterenol at 37℃ (N=3 per 601 

group). (G) BODIPY staining for lipid droplets in differentiated 3T3L1 adipocytes 602 

infected with equal amounts of Ad-ATGL-Flag or Ad-ATGL(F2A)-Flag and stimulated 603 

with or without 10 µM isoproterenol for 3 hours. Adipocytes are outlined with dashed 604 

yellow lines. Scale bar represents 25 µm. (H) Quantifications of lipid droplet sizes in G. 605 



24  

N=300 lipid droplets per group. (I) Quantifications of the number of lipid droplets in G. 606 

N=50 cells per group. (J) Quantifications of TAG levels in G. N=3 per group. All data are 607 

presented as mean±SEM, except for H in which the horizontal lines indicate the median. *p 608 

< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 609 

 610 

Figure 4. AtglF2A/F2A mice have elevated lipolysis in adipose tissue. 611 

(A) Western blot analysis of proteins in the gonadal WAT or BAT from chow diet-fed 612 

Atgl++
 
and AtglF2A/F2A mice (N=4 mice per group). (B) Quantification of proteins in A. 613 

(C, D) The levels of FFA (C) and glycerol (D) released from gonadal WAT in chow 614 

diet-fed Atgl++
 
and AtglF2A/F2A 

mice after overnight fasting (N=4-6 mice per group). (E) 615 

Triglyceride hydrolase (TGH) activity in gonadal WAT from Atgl++
 
and AtglF2A/F2A mice 616 

which were fed an HFD for 8 weeks (N=4-5 mice per group). (F, G) mRNA levels of 617 

genes involved in FAO (F) and the activity of FAO (G) in gonadal WAT from Atgl++
 

618 

and AtglF2A/F2A mice which were fed an HFD for 8 weeks (N=3-10 mice per group). All 619 

data are presented as mean±SEM. *p < 0.05, **p < 0.01. 620 

 621 

Figure 5. AtglF2A/F2A mice are resistant to diet-induced obesity. 622 

(A) Body weights and images (inset) of 8-week-old Atgl++
 
and AtglF2A/F2A 

mice which 623 

were pair-fed an HFD for 16 weeks (N=8 mice per group). (B, C) Results of glucose 624 

tolerance (B) and insulin sensitivity (C) tests after 16-week of HFD feeding (N=4-6 625 

mice per group). (D) iAUC of GTT and ITT in (B) and (C). (E, F) energy expenditure in 626 

HFD-fed mice (N=5 mice per group). (G) Weights of liver and different fat tissues in 627 

HFD-fed mice (N=5 mice per group). (H-J) H&E staining of gonadal WAT and brown 628 

adipose tissue (BAT) sections (H, scale bar 100 µm) and quantification of adipocyte 629 

sizes in WAT (I) and BAT (J) in HFD-fed mice. (K) Hepatic triglyceride (left) and total 630 
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cholesterol levels (right) in HFD-fed mice (N=5 mice per group). (L) H&E staining of 631 

liver sections from HFD-fed mice (scale bar 100 µm). (M) Plasma ALT levels in HFD-632 

fed mice (N=4 mice per group). (N, O) mRNA levels of genes involved in FAO (N) and 633 

the activity of FAO (O) in the liver from HFD-fed
 
mice (N=4-6 mice per group). All 634 

data are presented as mean±SEM. *p < 0.05, **p < 0.01. 635 

 636 

Figure 6. Hepatic knockdown of UBR1 attenuates HFD-induced hepatic steatosis. 637 

(A) Body weights of 8-week-old Atgl++
 
and AtglF2A/F2A 

mice injected with AAV-TBG-638 

shCon or AAV-TBG-shUbr1 and fed an HFD for 8 weeks (N=8 mice per group). (B, C) 639 

Hepatic TAG levels (B) and plasma ALT levels (C) in HFD-fed mice (N=5 mice per 640 

group). (D, E) Results of GTT (D) and ITT (E) in HFD-fed mice (N=5-6 mice per 641 

group). (F) iAUC of GTT and ITT in (B) and (C). (G) Western blot analysis of proteins 642 

from the liver of HFD-fed mice which were fasted for 12 hours and injected with 1 U/kg 643 

insulin (i.p.). (H) mRNA levels of genes in the liver of HFD-fed mice (N=4-6 mice per 644 

group). (I) Western blot analysis of proteins in the liver of HFD-fed mice (N=3 mice per 645 

group). (J) Immunoprecipitation of ATGL and western blot analysis of 646 

polyubiquitination levels of ATGL in liver lysates from Atgl++
 
mice infected with AAV-647 

TBG-shCon or AAV-TBG-shUbr1. Results from two shCon- and two shUbr1-treated 648 

mice are shown. (K) Western blot detection of ATGL and UBR1 in the adipose tissue of 649 

8-week-old C57BL/6 or ob/ob mice (N=3 mice per group). *p < 0.05, **p < 0.01, ***p < 650 

0.001. For E and F, * represents Atgl++
 
+ shCon vs AtglF2A/F2A + shCon; # represents 651 

Atgl++
 
+ shCon vs Atgl++
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Supplemental Fig. 1 N-end rule regulation of ATGL
(A) Oil-Red-O staining for lipid droplets in C. elegans treated by pas-5 RNAi compared to the N2 negative control (scale bar 
represents 40 μm). (B) DIC images of lipid droplets in the 3rd instar salivary gland in fruit fly. ppl>mdy: overexpression of DGAT1 in 
salivary gland; ppl>mdy, rpn2: overexpression of DGAT1 and proteasome subunit Rpn2 in salivary gland (arrows indicate lipid 
droplets, scale bar represents 25 μm). (C) Western blot analysis of proteins in HeLa cells transfected with indicated siRNAs. (D) 
Immunoprecipitation of ATGL(1-160aa)-Flag truncated protein and western blot analysis of ubiquitin in HeLa cells transfected with 
ATGL(1-160aa)-Flag and the indicated siRNAs. Cells were treated with MG132 for 12 hours. (E) The lysine residues in the N-terminal 
region of the ATGL protein. (F-G) Western blot analysis of proteins in HeLa cells transfected with ATGL(mut)-Flag vector and siRNA. 
Cells were treated with MG132 for 12 hours.
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Supplemental Fig. 2 Regulation of the polyubiquitination levels of ATGL 
(A) mRNA levels of COP1 and PEX2 in HeLa cells transfected with indicated siRNAs. (B) Immunoprecipitation of ATGL-Flag and western 
blot analysis of the polyubiquitination levels of ATGL in HeLa cells transfected with indicated siRNAs and treated with or without 100 µM OA 
for 16 hours or with 100 µM OA for 16 hours followed by ISO (0.25 mM IBMX/1 µM isoproterenol) for 8 hours. (C-D) Immunoprecipitation of 
ATGL(K100R)-Flag and western blot analysis of the polyubiquitination levels of ATGL(K100R) in HeLa cells transfected with indicated 
siRNAs and treated with or without 100 µM OA for 16 hours or with 100 µM OA for 16 hours followed by ISO (0.25 mM IBMX/1 µM 
isoproterenol) for 8 hours. (E) Western blot analysis of proteins in differentiated 3T3L1 adipocytes infected with equal amounts of Ad-ATGL-
Flag or Ad-ATGL(F2A)-Flag. (F-G) Immunoprecipitation of ATGL(WT)-Flag or ATGL(F2A)-Flag and western blot analysis of associated 
proteins. All data are presented as mean±SEM.
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Supplemental Fig. 3 Characterization of AtglF2A/F2A mice.
(A) Schematic illustration of the Atg+/+ and AtglF2A/F2A alleles. (B) Comparison of the Atgl+/+ and AtglF2A/F2A sequences. In the mutant allele, 
the second codon is changed from F (TTC) to A (GCG). (C) Western blot analysis of proteins in the muscle and heart from Atgl+/+ and 
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(N=7 mice per group). (F-G) Oxygen consumption (VO2) (F) and carbon dioxide production (VCO2) (G) in HFD-fed Atgl+/+ and AtglF2A/F2A 
mice (N=3-4 mice per group). (H) Body composition of Atgl+/+ and AtglF2A/F2A mice which were fed an HFD for 8 weeks (N=5 mice per 
group). (I) Western blot analysis of ATGL in the liver of chow-fed mice (N=5 mice per group). All data are presented as mean±SEM. * p < 
0.05.
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Supplemental Fig. 4 Knockdown of Ubr1 suppresses HFD-induced hepatic steatosis dependent on the activity of ATGL.
(A) 8-week-old C57BL/6 mice were injected with AAV-TBG-shCon or AAV-TBG-shUbr1 and fed a chow diet for 1 month. Hepatic TAG 
levels were measured in fed or 16-hr fasted mice (N=2-3 mice per group). (B) H&E staining of liver sections from HFD-fed Atgl+/+ and 
AtglF2A/F2A mice injected with AAV-TBG-shCon or AAV-TBG-shUbr1. (C-E) The oxygen consumption (C), CO2 production (D), and energy 
expenditure (E) in 8-week-old Atgl+/+ and AtglF2A/F2A mice injected with AAV-TBG-shCon or AAV-TBG-shUbr1 and fed an HFD for 8 weeks 
(N=3-6 mice per group). (F) Plasma insulin levels in 8-week-old Atgl+/+ and AtglF2A/F2A mice injected with AAV-TBG-shCon or AAV-TBG-
shUbr1 and fed an HFD for 8 weeks (N=4-6 mice per group). (G, H) Western blot analysis of proteins from the liver of HFD-fed mice which 
were fasted for 12 hours and injected with 1 U/kg insulin (i.p.). (I) mRNA levels of genes in lipogenesis, lipolysis, and FAO in 8-week-old 
Atgl+/+ and AtglF2A/F2A mice injected with AAV-TBG-shCon or AAV-TBG-shUbr1 and fed an HFD for 8 weeks (N=4-6 mice per group). (J) 
Western blot analysis of proteins in HeLa cells transfected with indicated siRNAs. (K) Western blot analysis of proteins in Atgl+/+ mice
injected with AAV-TBG-shCon or AAV-TBG-shUbr1 and fed an HFD for 8 weeks. * p < 0.05, ** p < 0.01, ** p < 0.001.
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Supplementary Table S1: Lipid storage phenotypes caused by RNAi 
knockdown of genes encoding proteasome components in C. elegans 

Gene function Gene name phenotype 
P

ro
te

as
o
m

e 
co

re
 s

u
b
u
n
it

 Alpha 

pas-1 nd

pas-2 nd

pas-3 nd

pas-4 --- 

pas-5 --- 

pas-6 - 

pas-7 nd

Beta 

pbs-1 --- 

pbs-2 --- 

pbs-3 nd

pbs-4 -- 

pbs-5 - 

pbs-6 --- 

pbs-7 - 

P
ro

te
as

o
m

e 
re

g
u
la

to
ry

 p
ar

ti
cl

e 

Non 

ATPase-like 

rpn-1 - 

rpn-2 nd

rpn-3 -- 

rpn-4 - 

rpn-5 normal

rpn-6.1 --- 

rpn-6.2 normal

rpn-7 -- 

rpn-8 -- 

rpn-9 nd

rpn-10 normal

rpn-11 - 

rpn-12 nd

ATPase-like 

rpt-1 -- 

rpt-2 - 

rpt-3 normal

rpt-4 normal

rpt-5 -- 

rpt-6 nd
Lipid storage phenotypes were evaluated using PLIN-1::GFP (Liu et al., 2014). ---, -- and - stand 
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for severe, medium and mild reduction, respectively, in lipid storage compared to control worms.  

nd, not determined.



Supplementary Table S2: Metabolic profile of Atgl+/+ and AtglF2A/F2A  mice under chow diet.

Supplementary Table S3: Plasma parameters in HFD-fed Atgl+/+ and AtglF2A/F2A  mice.

Supplementary Table S4: siRNA sequences

* p<0.05

* p<0.05

Atgl+/+ AtglF2A/F2A

Body weight 23.45±0.56 23.77±0.78
Plasma triglyceride 60.19±4.84 72.69±4.81
Plasma cholesterol 83.08±2.92 72.98±4.82
Plasma glucose 9.06±1.67 7.57±0.75
Plasma insulin 0.19±0.033 0.13±0.027

Plasma FFA （fed) 0.12±0.0098 0.15±0.019
Plasma FFA (fasted overnight) 1.38±0.13 1.90±0.13 *
Hepatic triglyceride 9.92±1.28 9.62±0.77
Hepatic cholesterol 5.08±0.64 4.93±0.36

Atgl+/+ AtglF2A/F2A

Plasma triglyceride 50.25±5.13 55.83±5.97
Plasma cholesterol 170.51±23.06 189.79±18.28
Glucose 8.11±1.35 7.27±0.56
Insulin 2.60±0.76 0.87±0.098*
FFA 0.46±0.0088 0.56±0.034*
Adiponectin 10.39±1.48 9.48±0.99
Leptin (fold change) 1±0.37 0.78±0.17

siRNA sense (5’-3’) antisense (5’-3’)

human UBR1 5’-
GGCGUUGAGUCUUCGAUUATT-
3’

5’-
UAAUCGAAGACUCAACGCCTT-
3’

human UBR2 5’-
GCCGCUUUGAACUUUAUCATT-
3’

5’-
UGAUAAAGUUCAAAGCGGCTT-
3’

human ATGL 5’-
CGGCGAGAAUGUCAUUAUATT-
3’

5’-
UAUAAUGACAUUCUCGCCGTT-
3’

human PEX2 5’-
GCUAGUUUGGUCCCAGUUUTT-
3’

5’-
AAACUGGGACCAAACUAGCTT-
3’

human COP1 5’-
GCUGUGGUCUACCAAUCUATT-
3’

5’-
UAGAUUGGUAGACCACAGCTT-
3’


