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ABSTRACT2

Connectomics is fundamental in propelling our understanding of the nervous system’s3
organization, unearthing cells and wiring diagrams reconstructed from volume electron4
microscopy (EM) datasets. Such reconstructions, on the one hand, have benefited from ever5
more precise automatic segmentation methods, which leverage sophisticated deep learning6
architectures and advanced machine learning algorithms. On the other hand, the field of7
neuroscience at large, and of image processing in particular, has manifested a need for user-8
friendly and open source tools which enable the community to carry out advanced analyses.9
In line with this second vein, here we propose mEMbrain, an interactive MATLAB-based10
software which wraps algorithms and functions that enable labeling and segmentation of electron11
microscopy datasets in a user-friendly user interface compatible with Linux and Windows. Through12
its integration as an API to the volume annotation and segmentation tool VAST, mEMbrain13
encompasses functions for ground truth generation, image preprocessing, training of deep neural14
networks, and on-the-fly predictions for proofreading and evaluation. The final goals of our tool are15
to expedite manual labeling efforts and to harness MATLAB users with an array of semi-automatic16
approaches for instance segmentation. We tested our tool on a variety of datasets that span17
different species and developmental stages. With our software, our hope is to provide a solution18
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for lab-based neural reconstructions which does not require coding by the user, thus paving the19
way to affordable connectomics.20

Keywords: affordable connectomics, semi-automatic reconstruction, segmentation, VAST, local, neural circuits21

1 INTRODUCTION

Connectomics, the spearhead of modern neuroanatomy, has vastly expanded our understanding of the22
nervous system’s organization. It was through careful observation of the neural tissue that Santiago Ramon23
y Cajal, father of modern neuroscience and predecessor of connectomics, reasoned that the nervous24
system is composed of discrete elements - the nerve cells. He further hypothesized key functional cell and25
circuit properties, such as neuronal polarity and information flow in neuronal networks, from anatomical26
observations, documented in extraordinary drawings. Connectomics - in particular based on electron27
microscopy images - has progressed immensely, and while the first complete connectome - the “mind of28
a worm” - was a manual decade-long endeavor for a reconstruction of merely 300 neurons (White et al.,29
1986), technological and methodological strides have enabled the field to elucidate complete circuitry from30
several other neural systems (Lichtman and Denk, 2011; Denk et al., 2012; Helmstaedter et al., 2013;31
Lichtman et al., 2014; Morgan and Lichtman, 2013; Hayworth et al., 2015; Kasthuri et al., 2015).32

It would be highly impoverishing to view connectomics’ purpose as merely the pursuit of neural circuit33
cataloguing. In recent years, in fact, connectomic reconstructions have been a new tool instrumental34
to answering outstanding questions in various subfields of neuroscience, which required synaptic35
resolution. Developmental studies have vastly benefited from microconnectomic reconstructions, opening36
the possibility of investigating precise synaptic rearrangements that take place in the first stages of life37
(Tapia et al., 2012; Wilson et al., 2019; Witvliet et al., 2021; Meirovitch et al., 2021). Further, circuit38
reconstructions have allowed in-depth studies of phylogenetically diverse systems, such as the ciliomotor39
system of larval Platynereis, (Verasztó et al., 2017, 2020), learning and memory in octopus vulgaris (Bidel40
et al., 2022), the olfactory and learning systems of Drosophila (Scheffer et al., 2020; Li et al., 2020) and41
the visuomotor system of Ciona (Salas et al., 2018). Connectomes have also provided insights into systems42
neuroscience, where avenues to pair structural and functional data from the same region of the brain are43
being explored. Noticeable examples of such endeavors are the study of mechanosensation in the zebrafish44
(Odstrcil et al., 2022), the study of the posterior parietal mouse cortex, important for decision making tasks45
(Kuan et al., 2022), and the functional and structural reconstructions of a mouse’s primary visual cortex46
(Bock et al., 2011; Lee et al., 2016; Turner et al., 2022). Further, connectomes have proven to be a useful47
- and perhaps necessary - resource for computational modeling and simulation of circuits, by providing48
biological constraints such as connectivity, cell types and their anatomy. For example, the fly hemibrain49
(Scheffer et al., 2020) was queried to find cell candidates performing specific neural computations (Lu50
et al., 2022), murine connectomes have been shown to allow for discrimination between different candidate51
computational models of local circuits (Klinger et al., 2021), and the C. elegans connectome is being52
leveraged to simulate the first digital form of life through the open science project “OpenWorm” (Szigeti53
et al., 2014). Finally, we are at an exciting moment in connectomics’ history, as recent reconstructions54
allow us to open a window on the human brain (Shapson-Coe et al., 2021). This important milestone, in55
conjunction with contemporary efforts to develop a whole mouse connectome (Abbott et al., 2020), will56
enable the community to reconstruct circuits in the context of neuropathology, and shed light on wiring57
diagram alterations that give rise to the so-called “connectopathies” (Lichtman et al., 2008; Abbott et al.,58
2020).59
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All these neural reconstructions have become a reality due to the progress in tissue preparation for60
electron microscopy and the tremendous progress in computer vision and artificial intelligence techniques.61
In particular, machine and deep learning techniques have become of common use for segmenting neural62
processes, thus aiding and expediting hefty manual annotation, which represents one of the main bottlenecks63
of the connectomic pipeline, and paving the way to high-throughput neural architecture studies. In this64
frame, convolutional neural networks (CNNs) have emerged as a successful solution for pixel classification.65
A typical automatic neurite reconstruction first begins by inferring probability maps of each pixel/voxel in66
the image for classifying boundaries of distinct cells (Ciresan et al., 2012; Turaga et al., 2010). In particular,67
U-net architectures have become common practice for biomedical image segmentation (Ronneberger68
et al., 2015), and are widely employed to achieve this first task. In a second step, a different algorithm69
agglomerates the pixels/voxels confined within the same cell outlines.70

In the recent years, the field has benefited from deep learning algorithms designed specifically for the71
task of connectomic instance segmentation. One notable example of this is the Flood Filling Network72
architecture, a 3D CNN paired with a recurrent loop which segments in the volume one cell at a time73
by iteratively predicting and extending the cell’s shape (Januszewski et al., 2018). A similar end-to-end74
approach iteratively segmenting one cross section of a neuron at a time has been pursued independently75
(Meirovitch et al., 2016). Recently this approach has been extended by training networks to flood fill76
numerous objects in parallel (Meirovitch et al., 2019). Many of these elaborate and heavily engineered77
pipelines (see also Section 3.4) present open source code repositories, however they remain of difficult78
practical use for researchers who do not have a software or computational background. For these reasons,79
many of the largest connectomics efforts have been carried out in collaboration with teams of computer80
scientists or even companies, option that requires a great deal of resources, both in terms of funding, and in81
terms of computing and storage capabilities.82

While on one hand it is imperative to ever better the accuracy and scalability of these advanced algorithms,83
the field of image processing in particular, and science at large, have felt the urge for more democratic and84
easily accessible tools that can be intuitively employed by independent scientists. To name a few, tools85
such as ImageJ for general and multi-purpose image processing (Schneider et al., 2012; Schindelin et al.,86
2012), Ilastik (Berg et al., 2019) and Cellpose (Stringer et al., 2021) for cell segmentation, suite2p for87
calcium imaging (Pachitariu et al., 2017), Kilosort for electrophysiological data (Pachitariu et al., 2016),88
DeepLabCut (Mathis et al., 2018) and Moseq (Wiltschko et al., 2020) for behavioral analyses have enabled89
and empowered a larger number of scientists with the ability to carry out significant studies that previously90
would have been challenging or unfeasible, requiring non-trivial technical skills, time and resources. More91
specifically to the field of connectomics, there are a plethora of open software, mostly geared towards92
image labeling for manual reconstruction. Examples include but are not limited to VAST lite (Berger et al.,93
2018), Ilastik (Berg et al., 2019), NeuTU (Zhao et al., 2018), Knossos (Helmstaedter et al., 2011) with94
its online extension webKnossos (Boergens et al., 2017), and Reconstruct (Fiala, 2005). Because most of95
these software tools do not include a deep learning-based segmentation pipeline, a few software packages96
have been proposed to supply a CNN-based reconstruction, such as SegEM (Berning et al., 2015) which97
relies on skeletonized inputs for example from Knossos, and Uni-EM, a python-based software that wraps98
many of connectomics’ image processing techniques (Urakubo et al., 2019).99

We reckoned that making connectomics an affordable tool used by single labs meant providing a desktops100
solution compatible with the most common operating systems and computational frameworks currently101
used in the field. Thus, we focused our efforts here on creating a package based on MATLAB, which is one102
of the most commonly used coding environments in the basic science communities, providing its users with103
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a rich array of image processing and statistical analysis functions. Importantly, our main task here was not104
to present new functions for computer vision for connectomics, but rather we propose existing functions105
and machine learning models in a simple and user-friendly software package. Hence, the accuracy of our106
tool derives from the solutions presented previously in connectomics. As a second goal for our tool, we107
wished to create a virtuous and rapid EM reconstruction cycle which did not require solving the more108
expensive automated reconstruction problem. Thus, our deep learning tool greatly accelerates manual109
reconstruction in a manual reconstruction framework called VAST, an annotation and segmentation tool110
widespread in the community with numerous tools and benefits for data handling and data visualization.111
Hence, we expect our ML tools to be valuable to researchers that already use VAST. Thus, we created112
mEMbrain, a segmenting tool for affordable connectomics with the following attributes:113

• mEMbrain has an interactive, intuitive, and simple interface, which leverages image processing and114
deep learning algorithms without requiring any coding knowledge by the user.115

• mEMbrain is a MATLAB-based extension of VAST, a segmentation and annotation tool widely used116
in the Connectomics community (Berger et al., 2018). Using VAST as a server proves to be a clear-cut117
solution as it can splice the data and cache the space on demand, allowing mEMbrain to run on any118
cubical portion of datasets, independently of how the images are stored at the back-end.119

• mEMbrain processes datasets locally on commodity hardware, thereby abolishing the need of expensive120
clusters and time-consuming data transfers.121

We validated the robustness of mEMbrain by testing it on several species across different scales and parts122
of the nervous system. Further, we tested mEMbrain’s speedup in terms of manual annotation time, and123
observed several fold improvement in manual time. All together, this paper presents new connectomic124
tools in platforms that had poor support for connectomic research. Furthermore, our tool extends the125
functionality of VAST to allow semi-automated reconstruction, already offered by other platforms.126

2 MEMBRAIN’S CONCEPT

mEmbrain is a software tool that offers a pipeline for semi-automatic and machine learning-aided manual127
reconstruction of neural circuits through deep convolutional neural network (CNN) segmentation. Its user128
interface guides the user through all the necessary steps for semi-automatic reconstruction of electron129
microscopy (EM) datasets, comprising ground truth generation with data augmentation, data preprocessing,130
CNN training and monitoring, predictions based on electron microscopy datasets loaded in VAST, and131
on-the-fly validation of such predictions in VAST itself. mEMbrain is written in MATLAB, in order to132
interface seamlessly with VAST, a widely used annotation and segmentation tool (Berger et al., 2018).133
Most of today’s pipelines involving machine and deep learning rely on Python, which although incredibly134
proficient and widely used in the computational community, is still less adopted in biological fields. We135
wanted to bridge this gap to make connectomics more accessible to a larger biological science community.136
mEMbrain can run on any operating system where both VAST and MATLAB (with parallel computing and137
deep learning toolboxes installed) are operative.138

mEMbrain is a democratizer of computational image processing, which is necessary for EM circuit139
reconstruction. Its main purpose is to collect functions and processes normally carried out by software or140
computational scientists, and to embody them in a single software tool, which is intuitive and user-friendly,141
and accessible to any scientist. Thus, no coding skills are required for mEMbrain’s operation.142
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mEMbrain’s practicality starts from its installation. In many cases, software installation represents a143
hurdle, which in turn makes the frustrated user disinterested. To ease installation, our tool is a 5Mb folder144
downloadable from our GitHub page (github/mEMbrain). Once running, mEMbrain hosts all of its tools in145
one unique interface designed to be intuitive and user-friendly. mEMbrain’s design is modular, with every146
tab presenting a different step of the workflow. Thus, the user can either be guided through the pipeline by147
following the tab order, or they can access directly the processing step of interest.148

The main concept of mEMbrain is to create a synergistic dialogue with VAST in order to automate parts of149
the connectomic pipeline (see Figure 1). Typically, VAST is adopted by researchers for electron microscopy150
annotation and labeling. Such labeling and labeled microscopy can then be exported and directly used in151
mEMbrain, where images are processed and used to create datasets for training a deep learning model for152
semantic segmentation. Other than evaluating the results of the training phase through learning curves,153
the researcher can directly test how well the trained model performs, by making predictions on (portions154
of) the EM dataset open in VAST. The predictions are visible on-the-fly in VAST, superimposed on the155
open dataset. If the results achieved are not satisfactory, the user can improve the model by providing156
more ground truth examples; it is especially beneficial if the new labels incorporate regions and features of157
the dataset where the model predicted poorly. Hence, the newly generated ground truth is incorporated158
in the training dataset, and the deep learning model is retrained. This iterative process is continued until159
the results are deemed appropriate for the task at hand. In some cases, the iterative generation of new160
ground truth can be accelerated by making the deep learning segmentation editable in VAST, so that161
the researcher can swiftly correct such segmentation, saving time. Finally, once the prediction result is162
satisfactory, the final semantic segmentation can be leveraged for accelerating neural circuit reconstruction,163
by either using the predictions as a VAST layer, which dramatically speeds up manual painting (the main164
use-case of mEMbrain), using border predictions or by performing 2D instance segmentation. 3D instance165
segmentation algorithms are currently not incorporated in mEMbrain, but can be used in synergy with166
mEMbrain as surveyed in Sections 3.4 and 4.167

3 EXAMPLE WORKFLOW

We here report the various steps of the image processing pipeline we have implemented and wrapped168
within mEMbrain. For the typical flow, refer to Figure 2 for our general purpose GUI, and Figure 3 for the169
specific pipeline adopted for the C. elegans data described in Section 4.3.170

3.1 Dataset creation and image preprocessing171

The first step towards training neural networks for segmentation is the creation of a training dataset172
composed of both images and associated ground truth, or labels. It is common wisdom that abundant ground173
truth will yield a better prediction of the training algorithm. We realize that the preparation and curation174
of a comprehensive training dataset can represent a hurdle for many researchers. One strategy might be175
to label many EM images, however, this requires many hours dedicated to tedious manual annotation.176
Alternatively, computational methods can be leveraged for image processing; however, this requires having177
a good mastery of coding skills. Thus, we incorporated a dataset creation step, which allows researchers to178
process the labeled images paired with their EM counterpart with just a few mouse clicks. Once the user has179
imported the microscopy images coupled with their labels, mEMbrain converts the latter in images with 2180
or 3 classes, depending on the task at hand. The EM images are then corrected by stretching their grayscale.181
Subsequently, patches of a user-chosen dimension are extracted from the pair of EM and label images.182
Notably, mEMbrain first verifies the portion of the image that presents a saturated annotation, which can183
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Figure 1. mMEbrain’s workflow and integration with VAST. (A): communication between mEMbrain,
VAST and data storage. mEMbrain and VAST communicate bidirectionally, as VAST stores, caches and
splices the data which can then be imported into mEMbrain through VAST’s application programming
interface. mEMbrain’s outputs are then transferred back to VAST for visualization and postprocessing.
mEMbrain can also access the data directly at where it is stored, and will save there its outputs (if so
the user indicates). (B): mEMbrain’s iterative workflow. The user starts by creating a training dataset of
EM and corresponding labels 1), which are then used to train a convolutional deep learning network. The
results of such network can be visualized on-the-fly directly on datasets open in VAST 2). Further, if the
researcher is satisfied with the current state of network inference, they may proceed to a semi-automatic
approach for semantic segmentation 3). However, if they are not satisfied with the current output of the
network, the can use these predictions to accelerate further ground truth production 3-4), which is then
incorporated in further training of the network to achieve better results 4).

assume any arbitrary shape desired by the researcher. Then, mEMbrain efficiently extracts patches from184
such regions. Thus, the images do not have to be fully annotated for them to be incorporated in the training185
dataset, and this feature makes the region of interest selection more flexible, faster and seamless.186
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Figure 2. mEMbrain’s MATLAB-based GUI for data preprocessing, training, inference, and integration
with VAST. All the functions are collected in one user interface, and can be accessed by clicking the different
tabs. (A): These first 3 tabs allow the user to create a training dataset from EM images and corresponding
ground truth. (B): Further, the user can train a deep neural network. As default, we make use of MATLAB’s
built-in U-net, whose training can be customized through the various user-chosen parameters. The training’s
progress can be monitored by MATLAB’s learning curves. (C): To evaluate a network, predictions can be
made on small sample images, as seen in the small squares of the GUI. (D): Finally, researchers can infer
directly on-the-fly in VAST on the dataset herein open. Further, they can convert such inference to editable
layers in VAST, that may be leveraged for machine learning (ML)-based ground truth preparation.

One noteworthy feature of this step is the incorporation of data augmentation, in the hope that fewer187
annotated images are required to obtain a satisfying result. In particular, we verified that rotations yielded188
a better result during testing phase, hence we implemented a random rotation of any possible degree for189
every pair of patches. At each rotation of the ground truth data, mEMbrain uses the chessboard distance190
(or Chebyshev distance) between labeled pixels of the ground truth to the closest unlabeled pixels. Then,191
mEMbrain individuates pixels around which a square patch of user-defined size will contain fully annotated192
pixels, and such pixels are then used for patch generation. Further data augmentation methods such as193
image flipping, Gaussian blurring, motion blurring and histogram equalizer are also implemented. This194
ensemble of techniques ensures that nearby regions from the same image can be more heavily sampled195
for patch generation without making the training overfit such a region, allowing the extraction of “more196
patches for your brush stroke”.197

In addition to this “smart” patch generation feature, mEMbrain also includes conversion features for a)198
instance segmentation ground truth to contours ground truth (i.e. membrane ground truth) and b) membrane199
ground truth to skeleton ground truth. The former uses erosion and dilation with a user-specified filter200
radius to transform filled-in neuron segmentation annotations into membrane ground truth of a specified201
thickness. mEMbrain can also generate this membrane data with or without extracellular space filled202
in. For the latter feature, mEMbrain uses MATLAB’s built-in 2D binary skeletonization functions to203
generate 2D neuronal skeletons from membrane ground truth. The utility of such ground truth conversion204
lies in the possibility to then train subsequent deep learning networks in a supervised manner to learn205
and predict the medial axis of the neuronal backbone. Learning such neuronal backbone enhances the206
ability of existing reconstruction algorithms to agglomerate objects, as seen in Section 3.4. While we207
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implemented agglomeration techniques using neuronal backbones predicted by EM (see Figure 4), these208
will be integrated into mEMbrain’s subsequent software release, and are here described for their novelty209
and to allow the connectomics community to further test and explore such methods.210

Figure 3. Example workflow with mEMbrain and VAST. (A): mEMbrain’s header with step-by-step pipeline
for deep learning segmentation of EM images. (B): The user can initially apply a pretrained network on
the dataset at hand and use these predictions both for a) a first evaluation of which areas of the dataset
should be included in ground truth, and b) as a base for ground truth generation. The figure shows VAST’s
window with the C. elegans dataset open. In orange, the predictions of a pretrained network are shown. (C):
The user can convert the predictions to an editable layer in VAST, and use these as rough drafts of ground
truth. By manually correcting these, one can generate labels in a swifter manner, saving roughly half the
time. (D): Left: EM section of the C. elegans dauer state dataset. Second panel: mEMbrian’s predictions of
the same section. Third panel: mEMbrain’s 2D expansion. Right: example of 3D reconstruction obtained
through automatic agglomeration algorithms. The two reconstructed neurites are shown in VAST’s 3D
viewer.

3.2 Network training211

Once datasets are created and preprocessed, researchers are in the position to train a network for image212
segmentation. There are two options for approaching the training phase:213

1. train a pre-implemented U-net (Ronneberger et al., 2015);214

2. load a pre-defined network and continue training upon it.215
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The implementation of U-net was chosen given the success this deep learning architecture has in the216
field of biomedical imaging segmentation. Although the implementation of the network is built-in to217
MATLAB, the user still preserves ample degrees of freedom for customizing parameters of both the218
network architecture - such as the number of layers - and the training - for example the hyper parameters219
and the learning algorithm. As of now, most of mEMbrain’s features work when predicting 2 or 3 classes220
for the step of semantic segmentation. Importantly, the network can be saved as a matrix with trained221
weights, which can then be used for future transfer learning experiments (see section 4.6).222

Alternatively, pre-trained networks can be loaded in mEMbrain to be re-trained. As discussed in Section223
4.6, learning upon a pre-trained network, a strategy in the domain of transfer learning here referred to224
as continuous learning, typically yields better results with less ground truth. Of note, it is possible to225
import networks that have been trained with other platforms, such as PyTorch or Tensorflow, thanks to226
designated MATLAB functions (for a tutorial, the reader is referred to (mat, 2022)), or to import/export227
trained networks and architectures using the ONNX (Open Neural Network Exchange) open-source AI228
ecosystem format which is supported by various platforms including mEMbrain and MATLAB. Since229
much of deep-learning-enabled connectomics is done in Python-based machine learning platforms, we230
also wanted these users to be able to integrate mEMbrain into their workflows. Thus, we also implemented231
a feature where users can export neural networks trained on ground truth data in mEMbrain to the Open232
Neural Network Exchange (ONNX) format. This format preserves the architecture and trained weights of233
the model, allowing the user to import the model back into Python-based platforms such as Tensorflow and234
Pytorch for further investigation and analysis.235

For a quick assessment of deep learning model training, we implemented an evaluation tab, where one236
can use such a model to make predictions on a few test images and qualitatively gauge the goodness of the237
network.238

3.3 On-the-fly predictions with VAST239

Once one has trained a deep learning model for semantic segmentation and is satisfied with its results,240
prediction on the dataset may be carried out. mEMbrain has 3 different modalities for prediction, namely:241

• predictions on whole EM volumes;242

• predictions on specific regions of the EM volume;243

• predictions around anchor points positioned in VAST.244

When users predict on whole EM datasets - or portions of it - by either inserting the coordinates delimiting245
the regions of interest or by using VAST’s current view range, mEMbrain requests EM images open in246
VAST at that moment through the application program interface (API). Our implementation speeds up247
EM exporting by optimizing the image request and tailoring it to VAST’s caching system (Berger et al.,248
2018). Because VAST caches 16 contiguous sections at one given time, mEMbrain requests chunks of249
16 [1024 x 1024] sections at a time, reading first in the dataset’s z dimension, proceeding then in the x250
and y dimensions. Data is read at the mip level chosen by the user, which should match the resolution at251
which the network was trained. Once having read the EM images, mEMbrain corrects them with the same252
grayscale correction that was applied when preparing training datasets, and then it predicts the semantic253
segmentation with the chosen deep learning model. Because the training phase occurs on patches that have254
dimensions in multiples of [128 x 128] pixels, predictions on [1024 x 1024] pixels at a time is a valid255
operation. Once image pixels are classified, the predictions are saved as .pngs in a folder designated by256
the user. At the same time, mEMbrain creates a descriptor file (with extension .vsvi), which is a text file257
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following the JSON syntax that specifies the naming scheme and the storage location of the predicted258
images, as well as other metadata necessary for the dataset. Once created, the .vsvi file can be loaded259
(dragged and dropped) in VAST, which then loads the predictions, which can be viewed superimposed on260
the EM dataset.261

It might be useful, in some scenarios, to predict and segment only particular regions which do not all262
align along the same z axis. Leveraging VAST’s skeleton feature, researchers may allocate anchor points in263
regions of interest throughout the dataset. mEMbrain can then predict locally around such anchor points.264
One example of such scenario is when trying to determine if a deep learning model provides satisfactory265
predictions on a large dataset. For such evaluation, mEMbrain can predict a set of cubes centered around266
pre-selected coordinates (represented by VAST skeletons). Based on the outcome, the user can decide if267
the model’s output is satisfactory. Another example is the prediction only around certain regions of interest268
sparse through the dataset, such as synapses.269

3.4 mEMbrain as part of 3D instance segmentation pipelines270

Although currently mEMbrain does not have a 3D pipeline incorporated within its GUI, nevertheless our271
tool has been used for enabling 3D reconstructions. In fact, many of the pipelines for 3D reconstruction272
do rely on having high quality membrane prediction, which is one of our software’s main output. Thus,273
we tested mEMbrain as an essential prerequisite for one of the published 3D pipelines, namely the Cross274
Classification Clustering (3C) algorithm (Meirovitch et al., 2019), and its results are then showcased in the275
C. elegans and the whole mouse brain datasets in Section 4.276

With a few exceptions, all of the widely used reconstruction pipelines make an intermediate use of277
a membrane probabilities and an additional provisional over-segmentation (Turaga et al., 2010; Lee278
et al., 2015; Meirovitch et al., 2016; Lee et al., 2017; Wolf et al., 2018; Beier et al., 2017; Funke et al.,279
2018; Meirovitch et al., 2019; Macrina et al., 2021). We demonstrate the utility of this approach by280
leveraging recent agglomeration techniques, such as Cross Classification Clustering (Meirovitch et al.,281
2019), combined with novel predictions of neuronal backbones, described in Section 3.1. In a first step,282
mEMbrain’s output inferences are used to partition the space. This first over-segmentation, which aims at283
minimizing the number of objects internally contained in a neuronal boundary, is subsequently merged.284
While some pipelines attempt to achieve this goal with small 3D supervoxels (Macrina et al., 2021), we285
used here 2D segmentations that have a good representation of the neuronal cross section (Figure 4.2286
A). Agglomeration proceeds with an optimization step that matches 2-D objects across sections. This287
process may be aided and furthered by a novel agglomeration technique based on supervised learning of288
the medial axis of neurons, or 2-dimensional skeletons, as we presented in Section 3.1, which are learned289
from the conversion of membrane ground truth to skeleton ground truth. Our tests on the various datasets290
(see Section 4) demonstrate such convolutional neural networks can learn the medial axis of thin neurites291
and the intricate morphology of enwrapping glial cells, leading to complex topology of the skeletons292
such as circular skeletons for enwrapping objects and confident detection of bifurcations, including spine293
protrusions from dendritic shafts (see Figure 4). Overall, our empirical tests propose that learning and294
predicting skeletons directly from the EM images provides additional information to traditional pipelines.295
In particular, the agglomeration step can make use of such information by assembling objects whose296
skeleton strongly overlap across planes. Results of this algorithm are visible in Figure 5.297
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3.5 Expansion298

mEMbrain’s output prediction until this step is a categorical image (i.e. each pixel is assigned to one299
of the classes the network was trained on) accompanied by its relative probability map (i.e. how sure the300
network is that a said pixel pertains to an assigned class). However, for the vast majority of connectomics301
tasks, each cell should be individually identifiable. Predictions of EM images in different classes are a302
powerful resource that can either strongly expedite manual reconstruction, or can be the first step necessary303
for many semi-automatic reconstruction methods. These labels can be directly imported in VAST and used304
in the following manners:305

• Machine learning-aided manual annotation with membrane-constrained painting (i.e. “membrane306
detection+pen” mode). In this modality, the manual stroke of paint is restricted to be contiguous with307
mEMbrain’s membrane prediction. This allows the user to proceed in a swift manner, negligent of308
details such as complex borders that require a hefty amount of time if done precisely by hand.309

• Annotation with VAST’s flood filling functionality with underlying mEMbrain’s 2D segmentation.310
By clicking once on the neurite of interest with the filling tool, the object is colored and expanded until311
it reaches the borders predicted by mEMbrain.312

• Any other expansion algorithm that creates an instance segmentation starting from a semantic one.313

4 DATASET SHOWCASE

mEMbrain has been used to reconstruct neurons and neural circuits in a number of datasets, spanning314
different regions of the nervous system (including central and peripheral) at multiple scales (from cellular315
organelles to multi-nucleated cells) and across diverse species (including various invertebrates and316
mammals). Here follow some of the most interesting uses of mEMbrain insofar, showcasing a variety of317
unpublished datasets where our software had the opportunity to be tested, and where it played a pivotal318
role. The predictions carried out by mEMbrain were done on a Nvidia RTX 2080Ti GPU, which computed319
at a speed of 0.2 seconds/MB.320

4.1 The whole mouse brain dataset321

We employed mEMbrain in our ongoing efforts to develop staining and cutting protocols that will322
eventually enable the reconstruction of a whole mouse brain (Lu et al., in preparation). In the current phase323
of the project, a newborn whole mouse brain was stained and cut, and several sections were stitched. The324
region of interest here shown is from the mouse’s motor cortex M2, covering layers II/III through VI. The325
sample was imaged with a Zeiss multibeam scanning electron microscope, at a resolution of 4x4x40 nm/px,326
resulting in a total volume of 180×303×4m.327

The role of mEMbrain in this project was to assess the feasibility of reconstructing neural circuits when328
using such staining and cutting protocols. We started from a network pre-trained on adult mouse cortex. 6329
iterations of network training and manual corrections were needed in order to achieve good results, which330
amounted to 50 hours of ground truth preparation. We then predicted all the cell membranes in the volume331
and segmented each 2D section. The predictions were carried out on a desktop with a single GPU Nvidia332
RTX 2080 Ti, which required 5 days. Further, we used an automatic agglomeration algorithm (Meirovitch333
et al., 2019) to reconstruct 3D cells; the high quality results with an exceptionally low rate of merge errors334
(see Figure 5), reassure that these new protocols may consent larger scale mouse brain reconstructions.335
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Figure 4. mEMbrain’s skeleton predictions. (A): Electron microscopy tile from from the Cerebellum
dataset (see Section 4.2). Dimensions: 5731 x 3813 pixels. Resolution: 8nm per pixel along the x and
y axes. (B): mEMbrain’s membrane predictions achieved with supervised learning using expert-made
membrane ground truth. (C): Skeleton predictions achieved with supervised learning. The ground truth of
such learning is provided by mEMbrain’s automatic conversion of expert-made membrane ground truth
into skeleton ground truth (see Section 3.1). Similar to the membrane neural network, the input to the
skeletonizing network is the EM image with 4nm pixel resolution. (D): Superposition of the membrane
and skeleton probabilities as provided by the two separately trained convolutional neural networks. The
magnified images show the ability of the skeleton predictions to correctly detect continuous structures -
often glia - that enwrap around neurons, and thin neurites whose membrane probabilities are not always
neatly defined.

4.2 The Mouse Cerebellum dataset336

We tested mEMbrain on different regions of the mouse nervous system. Here, we report about our337
software’s use on the developmental mouse Cerebellum dataset (Dhanyasi et al., in preparation). The338
rationale behind this research is to study the development of the cerebellar circuits using electron microscopy.339
The region of interest is from the vermis, a midline region of the cerebellar cortex (Strata et al., 2012). The340
sample was imaged with a Zeiss multibeam scanning electron microscope at a resolution of 4x4x30 nm/px,341
yielding a traceable volume of 650x320x240 µm.342

In the context of this dataset, mEMbrain was used to expedite manual annotation, by both using343
mEMbrain’s predicted cell boundaries as constraints in VAST (see Section 3.5, Method 1), and by carrying344
out 2D instance segmentation provided by our tool. The researcher reported the greatest speed-up for this345

Frontiers 12



Pavarino et al. mEMbrain

Figure 5. Showcase results of mEMbrain on the whole mouse brain dataset. (A): 2D section of the whole
mouse dataset segmented by using mEMbrain’s cell contour prediction in combination with automatic
agglomeration methods (Meirovitch et al., 2019). (B): Example of a small region of interest of the dataset,
meant to highlight the good quality of the results. (C): Portion of a stack of sections, visualized in VAST’s
3D viewer. Lu et al., in preparation.

dataset to be provided by the 2D instance segmentation. To corroborate this assessment, an additional speed346
test was performed by three annotators, and an estimate of the expedition offered by our semi-automatic347
methods is recounted in Section 5.348

4.3 The C. elegans dataset349

We assessed our software on a number of invertebrates. Here we show mEMbrain’s employment on one350
C. elegans dataset. This sample (Britz et al., 2021) was a wildtype nematode in the dauer diapause, an351
alternative, stress-resistant larval stage geared towards survival (Cassada and Russell, 1975). The sample,352
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with a cylindrical shape in a diameter of 15.800 µm was imaged with a focused ion beam - scanning353
electron microscope (FIB-SEM) at a resolution of 5x5x8 nm (Britz et al., 2021).354

For this dataset, mEMbrain was used as a semi-automatic segmentation tool. A network was trained on355
an original set of ground truth, and then was used to predict on portions of the dataset for a swift qualitative356
evaluation of its output. After identifying regions that required more representation in the training set, more357
ground truth was generated by using the network’s predictions and rapidly correcting them manually. The358
researchers computed that semi-automatic ground truth generation cut the manual annotation labor time359
by a little less than 50%: the ground truth required for the first training iteration took 14 hours of manual360
annotation. Similarly, also subsequent iterations cumulatively required 18 hours of painting. However, the361
volume traced in this amount of time is doubled with respect to the first iteration. The workflow of this362
dataset is shown in Figure 2.363

4.4 The Octopus Vertical Lobe dataset364

We had the unique opportunity to test mEMbrain on non-conventional model organisms in the365
neuroscience community, thus testing the usefulness and generalizability of our tool across species.366
In particular, we were excited to assess mEMbrain on a sample from the Octopus vulgaris dataset (Bidel367
et al., 2022). The region of interest is in a lateral lobule of the Octopus vulgaris’ vertical lobe (VL), a brain368
structure mediating acquisition of long-term memory in this behaviorally advanced mollusk (Shomrat et al.,369
2008; Turchetti-Maia et al., 2017). The sample was imaged at high resolution with a Zeiss FEI Magellan370
scanning electron microscope equipped with a custom image acquisition software (Hayworth et al., 2014).371
The ROI was scanned over 891 sections each 30 nm thick at a resolution of 4 nm/px, constituting a traceable372
3D stack of 260x390x27 µm.373

mEMbrain was here mostly used for aiding manual annotation. As described in Section 3.5, the output374
semantic segmentation obtained with mEMbrain can be directly utilized in VAST as constraints for the375
annotation of objects. In this manner, a single drop of paint floods the entirety of the neurite, and allows the376
researcher to proceed in a swift manner, without needing to pay attention to anatomical details. For this377
dataset, the researchers using our software reported that there is a 2-fold increase in speed with mEMbrain’s378
aid when the purpose is to simply roughly skeletonize a cell, not being mindful of morphological details.379
However, the most significant advantage of using mEMbrain is the expediency of precise anatomical380
reconstructions, given that accurate reconstructions consume a sizeable amount of manual time. Instead,381
with mEMbrain, the time to skeletonize a neurite matches the time it takes to reconstruct it accurately;382
explaining why in this modality there is a 10-fold increase in speed when using mEMbrain. For example,383
this allowed for a fast and precise reconstruction of axonal boutons and cell bodies, which enabled384
subsequent morphometric analysis (see Figure 6).385

4.5 The Berghia stephanieae dataset386

We tested our tool on a second mollusc, the nudibranch Berghia stephanieae, a species of sea slug newly387
introduced for neuroscience research. The aim of this project is to determine the synaptic connectivity of388
neurons in the rhinophore ganglion, which receives input from the olfactory sensory organs. The rhinophore389
connective contains axons that travel between the rhinophore ganglion and the cerebral ganglion. The390
sample of the rhinophore connective here was sectioned at 33 nm and imaged with a Zeiss scanning electron391
microscope at a resolution of 4 nm/px (Drescher et al., 2021).392

The Berghia dataset was the first one on which we witnessed the power of transfer learning (see Section393
4.6). 7-10 hours of ground truth annotating produced a handful of labels, that were used to perform394
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Figure 6. Showcase results of mEMbrain on the molluscs’ datasets. (A): Examples of the Octopus vulgaris
dataset, by Bidel et al. (Bidel et al., 2022). On the left, sample of the cell boundaries predicted by
mEMbrain and shown in VAST’s 3D viewer. On the right: 3D rendering of interneurons (yellow) and
afferents (green) in the learning and memory brain center in the octopus brain. Reconstruction mode: pen
annotation constrained “on-the-fly” in VAST by mEMbrain’s border probabilities. (B): Examples of the
dataset from the rhinophore connective of the nudibranch, Berghia stephanieae (Drescher et al., 2021). The
left image shows membrane predictions in a whole connective slice, while the right panel shows a section
from the same region with instance segmentation applied, which was obtained starting from mEMbrain’s
cell boundaries and applying the automatic algorithm 3C (Meirovitch et al., 2019). To appreciate the sheer
number of processes in this brain area, small regions are zoomed out in orange.

continuous learning from a network pre-trained on the Octopus vulgaris dataset. mEMbrain’s output was395
used to obtain 3D segmentation when agglomerated with automatic algorithms (Meirovitch et al., 2019).396
This reconstruction enabled the possibility to automatically count the number of processes present in the397

Frontiers 15



Pavarino et al. mEMbrain

rhinophore connective tissue region, and revealed that this part of the nudibranch nervous system harbors398
an exceedingly high number of processes (roughly 30 000 - the counting was double checked by manual399
inspection). This was an important finding, as the Berghia stephanieae’s rhinophore ganglion itself contains400
only 9000 cell bodies (Drescher et al., 2021). The complex organization and the abundance of processes401
(shown in Figure 6) suggest that such peripheral organs are highly interconnected with the central nervous402
system of the animal, sharing similarities with octopuses and other cephalopods (Hochner, 2012; Zullo and403
Hochner, 2011).404

4.6 Transfer Learning405

One tool that we found incredibly valuable in our reconstructions was using knowledge learnt from one406
dataset and applying it towards others, leveraging the concept of transfer learning, and more specifically of407
domain adaptation Roels et al. (2019). We experimented with a variety of modalities for transfer learning.408
We started by freezing all the model’s weights except for the last layer, a strategy that maintains the internal409
representations previously learned by the model, while fine tuning the last layer for the specific new dataset410
at hand. We then tested the idea of freezing only the model’s encoding weights, in other words the first half411
of a U-Net architecture, while allowing the decoder’s weights to fine tune for the new dataset. Further, we412
explored allowing the encoder to learn at a very slow rate (maintaining most of the pre-trained knowledge),413
typically 10 times smaller than the decoder’s learning rate, in a technique called “leaky freeze”. Moreover,414
we tested applying a continuous learning approach, whereby after training on a first dataset, the same415
network is trained on a second one without modification of its learning rates. One concern that might416
arise with this approach is the occurrence of catastrophic forgetting, which is the tendency of a network to417
completely and abruptly forget previous learned information, upon learning new information (McCloskey418
and Cohen, 1989). For this reason, we also tested an episodic memory strategy, where the training schedule419
interleaves learning from the two datasets at hand.420

The main conclusion of our multiple experiments is that the strategy of transfer learning significantly421
reduces the time needed to achieve satisfactory results; pre-trained networks have already learned multiple422
fundamental features of EM images, tentatively distinguishing membranes of cells. Thus, the training of423
networks on subsequent datasets is geared towards fine-tuning their a priori knowledge and adapting it to424
the specific dataset at hand. This means that the number of epochs - that is the number of passes of the425
whole training dataset that the deep learning network has completed - required for good performance is426
significantly less than when training a network from scratch. Furthermore, the amount of ground truth427
needed to achieve satisfactory results is also drastically reduced, as many of the features - such as edge428
detection, boundary detection, and general interpretation of different gray scales of electron microscopy429
images - have already been assimilated from learning on the previous data. The second conclusion from430
our tests highlights that the strategy of continuous learning is the one that yielded the best results. Further,431
this method is particularly user-friendly given that no alterations to the network need to be made.432

It is important to note that transfer learning works best when the network trains on datasets that share433
many common features. One striking example where transfer learning proved to be a powerful technique434
was in the Berghia stephanieae dataset. For this project, the human-generated ground truth was reasonably435
scarce, and hence when a network was trained with mEMbrain for semantic segmentation, the outcomes436
were quite poor, as can be seen in Figure 7. However, we noticed a qualitatively strong resemblance437
between the EM image properties of the Berghia stephanieae and of the Octopus vulgaris. We reasoned438
that this could be a case in which transfer learning techniques would be especially impactful in aiding the439
paucity of ground truth to learn from. Thus, we took the best-performing network trained on the Octopus440
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Figure 7. Transfer learning approaches from the Octopus to the Berghia stephanieae datasets. (A):
example of poor generalization of the network on the Berghia dataset, due to limited training ground truth.
In green the intracellular space, in blue the cell boundaries, and in red the remainders. (B): networks
pretrained on the Octopus dataset predictions on the Berghia dataset without continuous learning (left) and
with continuous learning (right). In grayscale are membranes only, while below they are overlayed to EM
images.

Frontiers 17



Pavarino et al. mEMbrain

vulgaris and we trained it in a continuous learning fashion for 5 subsequent epochs on 3 ground truth441
images from the Berghia stephanieae dataset. Within only 10 minutes of training, the validation accuracy442
of the network reached 97% and the results were of high quality, as can be seen from Figure 7.443

Hence, working with pre-trained networks and fine-tuning them on the specific dataset at hand444
dramatically reduces the time invested both in ground truth generation and in training of the network. We445
highly recommend to save previously trained networks and to further their learning on new datasets in446
order to expedite the segmentation process.447

5 EVALUATING SPEED UP WITH MACHINE LEARNING-AIDED PAINTING

We tested the speed up provided by mEMbrain’s output by conducting a proof-of-concept timed experiment.448
We asked three experienced researchers to manually annotate one neurite for 10 minutes. We then compared449
the resulting labeled volume with the volumes annotated by the same researchers when using mEMbrain’s450
output in combination with VAST’s tools. In particular, we tested:451

• using mEMbrain’s 2D segmentation in combination with VAST’s pen annotation mode (Section 3.5,452
Method 1);453

• using mEMbrain’s 2D segmentation in combination with VAST’s filling tool (Section 3.5, Method 2);454

• using machine learning-aided manual annotation with membrane-constrained painting carried out with455
VAST’s pen annotation mode;456

We benchmarked such methods against manual annotations only. The tests were carried on the Mouse457
Cerebellum dataset, presented in Section 4.2. The results are quantified in Figure 8C. The main finding is458
that painting with an underlying machine learning aid is at least 20 times faster than labeling purely with459
manual approaches. More specifically, the combination of mEMbrain’s 2D segmentation together with460
VAST’s pen annotation model yields the fastest results, particularly when striving for accuracy. In contrast,461
opting for mEMbrain’s 2D segmentation in tandem with VAST’s flooding tool, while vastly accelerating462
manual labor, might be suboptimal in scenarios in which VAST’s flooding tool could yield to merge errors,463
which in turn require more time for correction and label postprocessing. However, this modality has been464
reported by our user to be most ergonomic. This speed evaluation will need to be corroborated by future465
tests on different datasets.466

6 COMPARISON WITH OTHER TOOLS

While there are many free software tools in the field for labeling and manual annotation, visualization and467
proofreading, there are fewer software providing a comprehensive and user-friendly pipeline for CNN468
training geared towards EM segmentation. One first aspect to notice is that all software, mEMbrain included,469
rely on other packages for visualization and proofreading. The power of mEMbrain relies precisely in its470
synergy with VAST, which is excellent for data handling, visualization, annotation, and offers a variety471
of tools that can be co-leveraged together with our software. For these reasons, mEMbrain features the472
very useful ability to predict on-the-fly in regions chosen by the researcher and immediately visualizable in473
VAST. This greatly enables the scientist to assess the quality of mMEbrain’s outcome, and mitigates the474
the time for import and export of datasets and segmentations.475

Another feature of mEMbrain we deem fundamental is its wrapping of all the pipeline in one unique476
GUI, without the user having to interact with code and having to master different interfaces. Importantly,477
mEMbrain provides the ability to create datasets necessary for the training phase, which are data-augmented478
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Figure 8. Examples of the mouse Cerebellum dataset and summary of speed up test with machine learning-
aided painting. (A): Portion of a section from the cerebellum dataset, from Dhanyasi et al., in preparation.
The 2D instance segmentation was achieved through mEMbrain’s ML-aided painting. (B): Example of a 3D
structure, visualized in VAST’s 3D viewer. (C): bar graph of the average speed of three machine learning-
aided painting modalities together with manual annotation. The test was performed by 3 experienced
annotators on the Cerebellum dataset.(D): sample visual results of the speed test from one annotator painted
in 10 minutes. Top left: volume painted with the 2D segmentation in tandem with VAST’s pen mode. Top
right: volume painted with the 2D segmentation together with VAST’s fill mode. Bottom left: volume
painted when membrane detections are used with VAST’s paint mode. Bottom right: volume painted with
manual annotation only.

in order to enhance the learning abilities of the network. In Table 1 we show a brief summary of the salient479
points we reckoned important for a user-friendly software tool compared across the packages most similar480
to mEMbrain.481

7 DISCUSSION AND OUTLOOK

Here, we presented a software tool - mEMbrain - which provides a solution for carrying out semi-automatic482
CNN-based segmentation of electron microscopy datasets. Importantly, our package does not require483
any installation, and it does not assume any prior experience of the user in coding. mEMbrain works484
synergistically with VAST, a widely used annotation and segmentation tool in the connectomics community485
(Berger et al., 2018). Our hope is that VAST users will be enabled in their reconstructions thanks to486
mEMbrain.487
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mEMbrain SegEM Uni-EM
Language Matlab Matlab python
Has GUI Yes No Yes

Contains all the steps for the segmentation pipeline Yes No Yes
Trains 2D networks Yes Yes Yes
Trains 3D networks No Yes Yes
Predicts on-the-fly Yes No No

Designed to train locally Yes No Yes

Table 1. Summary of the comparison between the state-of-the-art (semi) automatic segmentation pipelines
in connectomics. The qualities in the various rows represent some of the parameters we deemed important
when designing mEMbrain.

Our tool compares favorably to other similar published software tools. One feature that we hope to488
incorporate in future editions of mEMbrain is the possibility to train on state-of-the-art 3D CNNs, such as489
3C (Meirovitch et al., 2019), thereby allowing for better results. Nevertheless, it is important to note that490
2D section segmentation can provide satisfactory results, depending on the quality of the sample staining491
and the dataset alignment.492

One of the main motivations for coding mEMbrain was its capability for processing datasets and running493
deep learning algorithms on local computers. Although at first sight this may appear as a set-back, it494
represents a tangible means for affordable connectomics by abolishing the costs for expensive clusters.495
Furthermore, it avoids the need of transferring massive datasets in different locations, which results in496
a gain in terms of time, and allows for a rapid validation of results due to its close dialogue with VAST.497
Many of the results showed in this paper were obtained by using a single Nvidia GPU RTX 2080 Ti. Thus,498
with the current technology the use of mEMbrain is best when the dataset is within the terabyte range. To499
this end, a useful extension of the toolbox would be to allow the possibility of predicting on a computing500
cluster when the user necessitates it. Moreover, we noticed how the main bottleneck of the predicting time501
is created by MATLAB reading chunks of data from VAST. Therefore another possible future direction502
is to allow for the prediction of multiple classifiers at the same time (e.g. co-prediction of mitochondria503
and vesicles) in order to avoid reading the dataset multiple times. Nevertheless, it is foreseeable that the504
available technology will improve, and with it also the prediction time with mEMbrain.505

Finally, from the locality of our solution stems the exciting opportunity to place the segmentation506
step of the connectomics pipeline next to the scope, and to readily predict each tile scanned by the507
electron microscope, allowing researchers to access their on-the-fly reconstruction in a more timely fashion508
(Lichtman et al., 2014).509
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